Chapter 1
Introduction to Pretreatment Facility Inspection

<table>
<thead>
<tr>
<th>1.1 Protecting People and the Environment</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1.1 General Pretreatment Regulations</td>
<td>4</td>
</tr>
<tr>
<td>1.1.2 Source Monitoring and Compliance</td>
<td>5</td>
</tr>
<tr>
<td>1.1.2.1 Records and Reports</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2 Pretreatment Inspection</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.1 Protecting Capital Facilities</td>
<td>8</td>
</tr>
<tr>
<td>1.2.2 Protecting Agency Personnel</td>
<td>8</td>
</tr>
<tr>
<td>1.2.3 Protecting the Community</td>
<td>9</td>
</tr>
<tr>
<td>1.2.4 Protecting the Environment</td>
<td>9</td>
</tr>
<tr>
<td>1.2.5 Compliance Assistance and Regulation</td>
<td>10</td>
</tr>
<tr>
<td>1.2.6 Preventing Pollution</td>
<td>11</td>
</tr>
<tr>
<td>1.2.7 Collecting Adequate Revenue</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.3 Pretreatment Facility Inspectors</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.3.1 Educational Requirements</td>
<td>15</td>
</tr>
<tr>
<td>1.3.2 Basic Competencies</td>
<td>15</td>
</tr>
<tr>
<td>1.3.3 Staffing</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.4 Pretreatment Facilities</th>
<th>19</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.1 Performance</td>
<td>19</td>
</tr>
<tr>
<td>1.4.1.1 Reliability</td>
<td>21</td>
</tr>
<tr>
<td>1.4.1.2 Maintainability</td>
<td>21</td>
</tr>
<tr>
<td>1.4.2 Site Selection</td>
<td>21</td>
</tr>
<tr>
<td>1.4.3 Flexibility</td>
<td>22</td>
</tr>
<tr>
<td>1.4.4 Safety and OSHA Requirements</td>
<td>22</td>
</tr>
<tr>
<td>1.4.5 Hazardous Waste Requirements</td>
<td>22</td>
</tr>
<tr>
<td>1.4.6 Operating Plans, Log Sheets, and O&M Manuals</td>
<td>22</td>
</tr>
<tr>
<td>1.4.7 Operator Training</td>
<td>23</td>
</tr>
<tr>
<td>1.4.8 Management Commitment and Support</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.5 Pretreatment Technology</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.1 Wastewater Source and Discharge</td>
<td>24</td>
</tr>
<tr>
<td>Characteristics</td>
<td></td>
</tr>
<tr>
<td>1.5.2 Treatability Studies Review</td>
<td>25</td>
</tr>
<tr>
<td>1.5.2.1 Physical and Chemical Treatment</td>
<td>25</td>
</tr>
<tr>
<td>1.5.2.2 Biological Treatment</td>
<td>27</td>
</tr>
<tr>
<td>1.5.2.3 Sludge Treatment</td>
<td>27</td>
</tr>
<tr>
<td>1.5.3 Treatment and Discharge Objectives</td>
<td>27</td>
</tr>
<tr>
<td>1.5.4 Flow</td>
<td>27</td>
</tr>
<tr>
<td>1.5.5 Characteristics</td>
<td>28</td>
</tr>
<tr>
<td>1.5.6 Mandated Pretreatment Standards</td>
<td>28</td>
</tr>
<tr>
<td>1.5.7 Pollutants and Toxic Conditions</td>
<td>29</td>
</tr>
<tr>
<td>1.5.7.1 Inorganic Pollutants</td>
<td>29</td>
</tr>
<tr>
<td>1.5.7.2 Organic Pollutants</td>
<td>29</td>
</tr>
<tr>
<td>1.5.7.3 pH</td>
<td>30</td>
</tr>
<tr>
<td>1.5.7.4 Temperature</td>
<td>30</td>
</tr>
<tr>
<td>1.5.7.5 Sulfide Compounds</td>
<td>30</td>
</tr>
<tr>
<td>1.5.8 Control and Monitoring Guidelines</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.6 Source Control and Pollution Prevention</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6.1 Manufacturing Process Modifications</td>
<td>31</td>
</tr>
<tr>
<td>1.6.1.1 Change Raw Materials</td>
<td>32</td>
</tr>
<tr>
<td>1.6.1.2 Modify Manufacturing Processes</td>
<td>32</td>
</tr>
<tr>
<td>1.6.1.3 Modify Process Equipment</td>
<td>32</td>
</tr>
<tr>
<td>1.6.1.4 Change Operating Guidelines</td>
<td>33</td>
</tr>
<tr>
<td>1.6.2 Conservation, Recovery, and Reuse</td>
<td>33</td>
</tr>
<tr>
<td>1.6.2.1 Housekeeping and Materials</td>
<td>33</td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>1.6.2.2 Modification to Reduce Use</td>
<td>35</td>
</tr>
<tr>
<td>1.6.2.3 Physical Recovery and Separation</td>
<td>37</td>
</tr>
<tr>
<td>1.6.2.4 Wastewater Segregation and Treatment</td>
<td>39</td>
</tr>
<tr>
<td>1.6.2.5 Waste Exchange and Management</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.7 Industrial Pretreatment Technologies</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.7.1 Physical Treatment</td>
<td>40</td>
</tr>
<tr>
<td>1.7.1.1 Equalization</td>
<td>40</td>
</tr>
</tbody>
</table>
Table of Contents

1.7.1.2 Screening 41
1.7.1.3 Sedimentation 43
1.7.1.4 Flotation 46
1.7.1.5 Filtration 47
1.7.1.6 Evaporation 51
1.7.1.7 Distillation 52
1.7.1.8 Adsorption 54
1.7.1.9 Stripping 55
1.7.1.10 Other Physical Processes 57

1.7.2 Chemical Treatment 60
1.7.2.1 Neutralization 61
1.7.2.2 Precipitation 62
1.7.2.3 Ion Exchange 63
1.7.2.4 Oxidation and Reduction 65
1.7.2.5 Dechlorination 66

1.7.3 Biological Treatment 66
1.7.3.1 Stabilization Ponds 67
1.7.3.2 Aerated Lagoons 67
1.7.3.3 Activated Sludge 67
1.7.3.4 Trickling Filters 68
1.7.3.5 Anaerobic Digestion 68

1.7.4 Land Treatment 68

1.7.5 Thermal Treatment 69
1.7.5.1 Liquid Injection 69
1.7.5.2 Rotary Kilns 70
1.7.5.3 Fluidized Beds 70
1.7.5.4 Other Thermal Technologies 70

1.7.6 Sludge Treatment 71
1.7.6.1 Sludge Thickening 72
1.7.6.2 Digestion 72
1.7.6.3 Conditioning 72
1.7.6.4 Dewatering and Drying 73
1.7.6.5 Incineration and Wet Oxidation 73
1.7.6.6 Stabilization and Solidification 73
1.7.6.7 Disposal 73

1.8 Fats, Oils, and Grease Reduction 74
1.8.1 Grease Traps and Interceptors 75
1.8.1.1 Bioremediation and Bioaugmentation 78
1.8.1.2 Maintenance Best Practices 79

1.9 Dental Amalgam Discharge Prevention 82
1.9.1 Dental Amalgam Rule 83
1.9.1.1 Pretreatment Standards 84
1.9.1.2 Reporting and Recordkeeping Requirements 85

1.9.2 Dental Separators 86

1.10 Basic Math for Inspectors 87
1.10.1 Significant Figures 87
1.10.2 Velocity and Flow Rate 88
1.10.3 Force and Pressure 92
1.10.4 Work, Head, and Power 97
1.10.5 Detention Time 101
1.10.6 Concentration and Loading Rate 103
1.10.6.1 Concentration 103
1.10.6.2 Loading Rate 104
1.10.7 Dilution and Mixing 105
1.10.7.1 Dilution Ratio and Factor 105
1.10.7.2 Concentration 106

1.11 Additional Resources 109

Chapter Review 110

Chapter 2

Safety 115

2.1 Safety Program 116
2.1.1 Responsibilities 116
2.1.2 Equipment and Supplies 118
2.1.3 Preparing for an Inspection 120

2.2 Driving and Traffic 123
2.2.1 Traffic Control in Streets 124

2.3 Confined Space 125
2.3.1 Classification 126
2.3.2 Atmospheric Hazards 127
2.3.2.1 Toxic Gases 130
2.3.2.2 Flammable and Explosive Gases 131
2.3.2.3 Oxygen-Deficient Atmospheres 134
2.3.2.4 Humidity 135
2.3.2.5 Atmospheric Testing Results 135
2.3.3 Entering a Confined Space 135
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 Hazardous Materials</td>
<td>138</td>
</tr>
<tr>
<td>2.4.1 Corrosive Materials</td>
<td>140</td>
</tr>
<tr>
<td>2.4.2 Solvents and Flammable Materials</td>
<td>142</td>
</tr>
<tr>
<td>2.4.3 Poisonous and Toxic Chemicals</td>
<td>143</td>
</tr>
<tr>
<td>2.4.4 Infectious Agents</td>
<td>144</td>
</tr>
<tr>
<td>2.4.5 Protection from Hazardous Materials</td>
<td>146</td>
</tr>
<tr>
<td>2.4.5.1 Respiratory Protective Equipment</td>
<td>148</td>
</tr>
<tr>
<td>2.5 Physical Hazards</td>
<td>149</td>
</tr>
<tr>
<td>2.5.1 Electrical Hazards</td>
<td>150</td>
</tr>
<tr>
<td>2.5.2 Protection from Physical Hazards</td>
<td>152</td>
</tr>
<tr>
<td>2.6 Sampling Hazards</td>
<td>152</td>
</tr>
<tr>
<td>2.6.1 Manhole Safety</td>
<td>152</td>
</tr>
<tr>
<td>2.7 Industry Hazards</td>
<td>153</td>
</tr>
<tr>
<td>2.7.1 Plating Facilities</td>
<td>154</td>
</tr>
<tr>
<td>2.7.2 Chemical Blending</td>
<td>154</td>
</tr>
<tr>
<td>2.7.3 Semiconductor Industry</td>
<td>155</td>
</tr>
<tr>
<td>2.8 Regulations and References</td>
<td>156</td>
</tr>
<tr>
<td>2.9 Additional Resources</td>
<td>157</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>158</td>
</tr>
</tbody>
</table>

Chapter 3

Wastewater Characterization and Flow Monitoring | 161

3.1 Understanding Industrial Wastewaters | 162

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.1 Inspector's Responsibility</td>
<td>163</td>
</tr>
<tr>
<td>3.1.2 Effects of Industrial Wastewaters</td>
<td>165</td>
</tr>
<tr>
<td>3.1.2.1 Collection System</td>
<td>166</td>
</tr>
<tr>
<td>3.1.2.2 Treatment Plant</td>
<td>170</td>
</tr>
<tr>
<td>3.1.2.3 Effluent and Sludge Disposal and Reuse</td>
<td>172</td>
</tr>
</tbody>
</table>

3.2 Types of Industrial Wastewaters | 174

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1 Compatible and Noncompatible Pollutants</td>
<td>174</td>
</tr>
<tr>
<td>3.2.2 Dilute Solutions</td>
<td>174</td>
</tr>
<tr>
<td>3.2.3 Concentrated Solutions</td>
<td>175</td>
</tr>
</tbody>
</table>

3.3 Manufacturing Processes and Wastewater Generation | 182

3.3.1 Metal Finishing Industries | 183

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.1.1 Machining</td>
<td>183</td>
</tr>
<tr>
<td>3.3.1.2 Cleaning and Surface Preparation</td>
<td>183</td>
</tr>
<tr>
<td>3.3.1.3 Plating and Coating</td>
<td>185</td>
</tr>
<tr>
<td>3.3.1.4 Anodizing</td>
<td>186</td>
</tr>
<tr>
<td>3.3.1.5 Etching and Chemical Milling</td>
<td>186</td>
</tr>
<tr>
<td>3.3.1.6 Bright Dipping</td>
<td>186</td>
</tr>
<tr>
<td>3.3.1.7 Process Waste Characteristics</td>
<td>186</td>
</tr>
<tr>
<td>3.3.1.8 Wastewater Generation</td>
<td>187</td>
</tr>
</tbody>
</table>

3.3.2 Printed Circuit Board Manufacturing | 189

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.2.1 Process Waste Characteristics</td>
<td>191</td>
</tr>
</tbody>
</table>

3.3.3 Pulp, Paper, and Paperboard Industries | 193

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.3.1 Raw Material Preparation</td>
<td>193</td>
</tr>
<tr>
<td>3.3.3.2 Pulping</td>
<td>193</td>
</tr>
<tr>
<td>3.3.3.3 Papermaking</td>
<td>196</td>
</tr>
<tr>
<td>3.3.3.4 Process Waste Characteristics</td>
<td>196</td>
</tr>
</tbody>
</table>

3.3.4 Battery Manufacturing | 198

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.4.1 Anodes</td>
<td>200</td>
</tr>
<tr>
<td>3.3.4.2 Cathodes</td>
<td>200</td>
</tr>
<tr>
<td>3.3.4.3 Ancillary Operations</td>
<td>203</td>
</tr>
<tr>
<td>3.3.4.4 Process Waste Characteristics</td>
<td>203</td>
</tr>
</tbody>
</table>

3.3.5 Leather Tanning and Finishing | 205

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.5.1 Beamhouse Processes</td>
<td>205</td>
</tr>
<tr>
<td>3.3.5.2 Tanyard Processes</td>
<td>205</td>
</tr>
<tr>
<td>3.3.5.3 Finishing Processes</td>
<td>207</td>
</tr>
<tr>
<td>3.3.5.4 Process Waste Characteristics</td>
<td>207</td>
</tr>
</tbody>
</table>

3.3.6 Petroleum Refining Industry | 208

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.6.1 Process Waste Characteristics</td>
<td>210</td>
</tr>
</tbody>
</table>

3.3.7 Iron and Steel Industry | 213

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3.7.1 Coke Making</td>
<td>213</td>
</tr>
<tr>
<td>3.3.7.2 Sintering</td>
<td>213</td>
</tr>
<tr>
<td>3.3.7.3 Ironmaking</td>
<td>215</td>
</tr>
</tbody>
</table>
Table of Contents

3.3.7.4 Steelmaking 215
3.3.7.5 Vacuum Degassing 215
3.3.7.6 Continuous Casting 216
3.3.7.7 Hot Forming 216
3.3.7.8 Salt Bath Descaling 216
3.3.7.9 Acid Pickling 216
3.3.7.10 Cold Forming 216
3.3.7.11 Alkaline Cleaning 217
3.3.7.12 Hot Coating 217
3.3.7.13 Process Waste Characteristics 217

3.3.8 Inorganic Chemical Industries 218
 3.3.8.1 Chlor-Alkali 220
 3.3.8.2 Hydrofluoric Acid 223
 3.3.8.3 Titanium Dioxide 225
 3.3.8.4 Aluminum Fluoride 227

3.3.9 Chrome Pigments Industry 228
 3.3.9.1 Process Waste Characteristics 229
 3.3.9.2 Hydrogen Cyanide 230
 3.3.9.3 Sodium Dichromate 231
 3.3.9.4 Copper Sulfate 233
 3.3.9.5 Nickel Sulfate 234

3.4 Flow Monitoring 236

3.4.1 Open-Channel Flow Measurement 240
 3.4.1.1 Palmer-Bowlus Flumes 244
 3.4.1.2 Parshall Flumes 246
 3.4.1.3 Weirs 252
 3.4.1.4 Instrumentation 265
 3.4.1.5 Checking Open-Channel Flowmeter Accuracy 271

3.4.2 Closed-Pipe Flow-Metering Systems 275
 3.4.2.1 Electromagnetic Flowmeters 276
 3.4.2.2 Turbine Meters and Propeller Meters 276
 3.4.2.3 Ultrasonic Meters 277
 3.4.2.4 Pitot Tube Meters 278
 3.4.2.5 Differential Pressure Systems 278
 3.4.2.6 Velocity Modified Flowmeters 280

3.4.3 Automatic Sampler Flow-Proportioned Pacing 280

3.4.4 Approximate Measurement 282

Chapter Review 289
4.3.2.4 Petroleum Refineries 341
4.3.2.5 Pulp and Paper Industry 348
4.3.2.6 Chemical Manufacturing 350
4.3.2.7 Food and Dairy Products Processing 354
4.3.2.8 Rendering 361
4.3.2.9 Treatment Alternatives 368

4.4 Other Industries and Small Businesses 369

4.5 Centralized Waste Treatment Facilities 373

4.6 Report Writing 377

4.6.1 Routine Reports 377
4.6.2 Special Investigation Reports 378
4.6.3 Enforcement Reports 378

4.7 Inspections for Stormwater Compliance 380

4.7.1 Stormwater Runoff and Land Development Impacts 381
4.7.2 Pollutants, Sources, and Effects 383
4.7.3 Stormwater Pollution Prevention Plans 383
4.7.4 Best Management Practices 385
4.7.4.1 Operational Source Control BMPs 387
4.7.4.2 Structural Source Control BMPs 389
4.7.4.3 Treatment BMPs 391
4.7.5 Inspection Activities and Areas 397
4.7.5.1 Dust Control 398
4.7.5.2 Materials Storage and Transfer 399
4.7.5.3 Cleaning and Washing 401
4.7.5.4 Vehicle and Equipment Maintenance 403
4.7.5.5 Chemical Applications 405
4.7.5.6 Roof Vents and Fugitive Emissions 406
4.7.5.7 Concrete and Asphalt Production and Recycling 406
4.7.5.8 Metal Products Manufacturing and Post-Processing 407
4.7.5.9 Painting, Finishing, and Coating 407
4.7.5.10 Wood Treatment and Preservation 407
4.7.5.11 Commercial Composting 408
4.7.6 Inspecting Records 408

4.8 Sampling Procedures for Wastewater 409

4.8.1 Safety Precautions 409
4.8.2 Developing a Sampling Program 410
4.8.2.1 Sample Quantity and Intervals 412
4.8.3 Collected Samples 413
4.8.3.1 Analysis 414
4.8.3.2 Containers 416
4.8.3.3 Preservation 418
4.8.4 Sample Collection 419
4.8.4.1 Obtaining the Sample 419
4.8.4.2 Sampling for Total Toxic Organic Analyses 425
4.8.4.3 Field Tests 426
4.8.4.4 Grab and Composite Samples 427
4.8.4.5 Labeling Samples 427
4.8.4.6 Sample Storage 428
4.8.5 Documentation 429
4.8.5.1 Evidence for Court Actions 429
4.8.5.2 Chain of Custody 430
4.8.5.3 Report Writing 432
4.8.6 Tracing Illegal Discharges 432
4.8.7 Quality Assurance/Quality Control Procedures 435
4.8.7.1 Laboratory Quality Assurance/Quality Control 437

4.9 Math Assignment 439

4.9.1 Pollutant Mass 439
4.9.2 Pollutant Mass Rate 440
4.9.3 Composite Sampling 442
4.9.4 Spill Containment 448
4.9.5 Toxic Waste in Collection Systems 450
4.9.6 Waste Strength Monitoring 454
4.9.7 Collection System-Use Fees 459
4.9.8 Detention Time 465
4.9.9 pH Neutralization 467
4.9.10 pH Adjustment 474
4.9.11 Hydroxide Precipitation 477
4.9.12 Complexed Metal Precipitation 478
4.9.13 Reduction of Hexavalent Chromium 479
4.9.14 Cyanide Destruction 490
4.9.15 Counterflow Rinsing 495
Chapter 5
Pretreatment Program Management 507

5.1 Pollution Control Regulations 508

5.1.1 Environmental Protection Agency 508
 5.1.1.1 Organizational Structure 509
 5.1.1.2 Delegation of Federal Authority 509
 5.1.1.3 Definitions 512

5.2 Pretreatment Program Planning 512

5.2.1 Wastewater Treatment Plant Size and Staffing Needs 513
 5.2.1.1 Technical Capabilities of Pretreatment Managers 513
 5.2.1.2 Resources Required 514
 5.2.1.3 Outside Assistance 517

5.2.2 Industrial Development 517

5.2.3 Enforcement 518

5.2.4 Comparing Programs 519

5.2.5 Industrial Waste Pretreatment Program Approval 520

5.2.6 Funding 521
 5.2.6.1 Revenue Collection 522
 5.2.6.2 Industry Charges 522

5.2.7 Pretreatment Program Elements 527
 5.2.7.1 Discharge Permits 527
 5.2.7.2 Inspection 527
 5.2.7.3 Monitoring Industrial Wastewater Discharges 529
 5.2.7.4 Technical Expertise 530

5.2.8 Pretreatment Program Database 531
 5.2.8.1 Internet 532
 5.2.8.2 Preparing Reports and Industrial Waste Documents 532
 5.2.8.3 Field Records for Industrial Waste Personnel 532
 5.2.8.4 Laboratory Records 532

5.2.9 Professional Ethics 532

5.2.10 Compliance and Enforcement Programs 533

5.2.11 Laboratory Analyses 535

5.2.12 Legal Assistance 535

5.2.13 Pollution Prevention 536

5.3 Industrial Wastewater Discharge Permits 537

5.3.1 Information Required 537

5.3.2 Permit Review Process 538
 5.3.2.1 Individual Conditions 540
 5.3.2.2 Cooperation with Other Governmental Entities 541
 5.3.2.3 Recordkeeping 541

5.3.3 Legal Obligations 542

5.4 Industrial Waste Monitoring 542

5.4.1 Self-Monitoring 543

5.4.2 Monitoring by POTW Personnel 543

5.4.3 Reviewing Analytical Data 544
 5.4.3.1 Analytical Data Comparison 544
 5.4.3.2 Statistical Data Evaluation 545

5.5 Hazardous Waste Rules and Regulations 546

5.5.1 Effects on Pretreatment Programs 546
 5.5.1.1 Superfund Site Cleanup 548

5.5.2 Facilities for Hazardous Wastes 548

5.6 General Pretreatment Regulations 549

5.6.1 Prohibited Discharge Standards 550

5.6.2 Categorical Pretreatment Standards 552
 5.6.2.1 EPA-Regulated Categories 556
 5.6.2.2 EPA Reporting Requirements 558
 5.6.2.3 Modification of Categorical Standards 562
 5.6.2.4 Types of Categorical Standards 564
 5.6.2.5 Types of Wastestreams 566
 5.6.2.6 Total Toxic Organics 566
 5.6.2.7 Electroplating and Metal Finishing Regulations 568

5.6.2.8 Compliance Calculations 571
5.7 Wastewater Ordinance 578

5.7.1 EPA Minimum Requirements 579
5.7.2 Industrial Wastewater Prohibitions 580
5.7.2.1 General Provisions 581
5.7.2.2 Specific Provisions 582
5.7.3 Approval Process 582
5.7.4 Minimum Pretreatment Program Requirements 584
5.7.4.1 Legal Authority 584
5.7.4.2 Procedures 586
5.7.4.3 Staffing and Funding 588
5.7.4.4 Local Limits 588
5.7.4.5 Enforcement Response 588
5.7.4.6 Significant Industrial User Database 589
5.7.5 Pretreatment Program Implementation 589
5.7.6 Other Local Ordinances 589
5.7.6.1 Local Collection System Disposal Codes 590
5.7.6.2 Building Codes 590
5.7.6.3 Underground Tank Laws 590
5.7.6.4 Land Use Ordinances 591
5.7.6.5 Hazardous Waste Laws 591
5.7.6.6 Stormwater Regulations 592

5.8 Industrial Waste Compliance Programs 592

5.8.1 Enforcement Response Plan 593
5.8.2 Administrative Compliance Programs 594
5.8.2.1 Administrative Fine Penalties 599
5.8.2.2 Suspension and Revocation of Permits 600
5.8.3 Misdemeanor and Felony Criminal Actions 600
5.8.4 EPA Guidance on Enforcement 601

5.9 Auditing 602

5.9.1 Auditor Expertise 603
5.9.2 Audit Procedures 604
5.9.2.1 Preparation 605
5.9.2.2 IU Site Visits 605
5.9.2.3 Follow-Up 606
5.9.3 Required Resources 606

5.10 Public Relations 622

5.10.1 Industrial Personnel 623
5.10.2 Environmentalists and Politicians 623
5.10.3 News Media 624
5.10.4 General Public 626
5.10.5 Attorneys 626
5.10.6 Other POTW Agencies 626
5.10.7 Avoiding Philosophical Activism 627

5.11 Emergency Response Preparedness 627

5.11.1 Planning 627
5.11.1.1 Laws and Regulations 629
5.11.1.2 Notification List 630
5.11.2 Maintaining Control of the Incident 632
5.11.2.1 Initial Response 632
5.11.2.2 Identify the Material 633
5.11.2.3 Determine Affected Area 634
5.11.3 Typical Emergency Responses 634
5.11.3.1 Notification 634
5.11.3.2 Accidental Spill 634
5.11.3.3 Unknown Material Reported in Collection System 636
5.11.4 Limiting Incident Impact 637
5.11.4.1 Removal of Material 637
5.11.4.2 Treatment in the Collection System 638
5.11.4.3 Plant Preparedness 639
5.11.4.4 Enforcement 639
5.11.5 Preventing Explosive Conditions 640
5.11.5.1 Fire and Combustion Types and Effects 640
5.11.5.2 Factors Affecting Flammability 642
5.11.5.3 Flammable Materials Discharge Estimation 648
5.11.5.4 Screening for Dangerous Compounds 658
5.11.5.5 Detecting Combustible Gas 658
5.11.5.6 Photoionizer and Organic Vapor Analyzer Characteristics 659
5.11.6 Total Atmospheric Vapor and Gas Concentrations and Protection Level 661
 5.11.6.1 Instrument Sensitivity 662

Chapter Review 664

Answer Key 669
Glossary 671
Index 685
A

Accident reporting rules, 117
Acute exposure, 145
Acute health effect, 145
Adjusted metered water supply table, 524, 525f
Administrative compliance programs, 594–595, 596f–598f, 599
suspension and revocation of permits, 600
Adsorption, 25
Aerobic condition, 67
Aliquots, 280
Alternative mass limit formula, 501–502
Amalgam separators, 83, 83f, 86
Amalgam wastes, mercury-containing, 83
Anaerobic, 9
Anaerobic digestion, 29
Anaerobic ponds, 67
Analog readout, 239
Anodizing, 186
Atmospheres, oxygen-deficient, 134
Atmospheric hazards, 127–129, 296
atmospheric testing results, 135
confined space, 127–129
flammable and explosive gases, 131–134
humidity, 135
oxygen-deficient atmospheres, 134
toxic gases, 130–131
Atmospheric testing, 135
Atomic absorption (AA) spectrophotometers, 414
Auditing, 602–603
auditor expertise, 603–604
audit procedures, 604–605
follow-up, 606
IU site visits, 605–606
preparation, 605
required resources, 606
Auditing, checklist structure, 607, 608f–613f
file review and evaluation, 619
enforcement activities, 621
issuance of IU control mechanism, 619–620
IU compliance status, 621–622
IU identification, 619
POTW application of IU pretreatment standards, 620
POTW compliance monitoring, 620
interview, 614
application of pretreatment standards and requirements, 616
compliance monitoring, 616
control mechanism evaluation, 615
data management and public participation, 617–618
enforcement, 616–617
environmental effectiveness and pollution prevention, 618–619
evaluations and information, 619
IU characterization, 615
legal authority, 615
POTW pretreatment program modification, 614–619
resources, 618
observations and concerns, 622
Auditor expertise, 603–604
Autoignition temperature, 143
Automatic sampler flow-proportioned pacing, 280–281, 281f

B

Backsiphonage, 338
Baseline monitoring report (BMR), 302, 510, 559–560
BAT. See Best available technology (BAT)
Batch process, 314
Battery manufacturing processes and wastewater generation, 198, 200, 201f, 202f
ancillary operations, 203
anodes, 200
cathodes, 200, 203
process waste characteristics, 203, 204f
Bench-scale analysis, 25, 373
Best available technology (BAT), 553
Best management practices (BMPs), 79
inspections for stormwater compliance, 385, 387
operational source control, 387–388
structural source control, 389–390
treatment, 391–396, 391f–396f
Best practicable technology (BPT), 553, 554
Bioaugmentation, 78–79
Biochemical oxygen demand (BOD), 3, 162, 300, 350, 523
Biodegradable, 28, 174, 350
Biological treatment, industrial pretreatment technologies, 66
activated sludge, 67
aerated lagoons, 67
anaerobic digestion, 68
stabilization ponds, 67
trickling filters, 68
Bioremediation, 78–79
Bioretention planters, 391–392
Biosolids, 3
Biphenyls, polychlorinated, 54
Blowdown, 33, 165, 321, 566
BMPs. See Best management practices (BMPs)
BOD. See Biochemical oxygen demand (BOD)
BPT. See Best practicable technology (BPT)
Brine system, 220
Bubbler, 267, 268f
Building codes, 590
Canister-type respirators, 148
Capacitance probes, 269, 271, 271f
Carbon monoxide (CO), 130
Carcinogen, 8, 120, 630
Cardiopulmonary resuscitation (CPR), 117
Catch basin, 368
Categorical Pretreatment Standards, 552–554, 552t–553t
Categorical standards, 181, 318, 509
modification, 562–564
fundamentally different factors, 562–563
net gross calculations, 563
removal credits, 563–564
Caution, 139
Cementation, 60
Centralized waste treatment (CWT) facility, 298, 373–377,
374f–376f, 548
Centrate, 57
Centrifuges, 57
Chain of custody, 303, 581
Cheese manufacturing facility, 356–357, 356f, 357f
Chelating agent, 185, 411
Chemical applications, inspection activities and areas, 405–406
Chemical coating, 185, 186f
Chemical manufacturing, industry-specific inspection procedures,
350, 351f
general manufacturing area, 353
manufacturing process steps, 351
wastewater pretreatment, 351, 352f, 353
wastewater treatment area, 353–354
Chemical oxygen demand (COD), 197, 523
Chemical pulping, 194
Chemical treatment, industrial pretreatment technologies, 60–61
dechlorination, 66
ion exchange, 63–65, 65f
neutralization, 61–62, 61f
oxidation and reduction, 65–66
precipitation, 62–63, 62f, 63f
Chlorine, 130
Chrome pigments industry, manufacturing processes and
wastewater generation, 228–229, 229f
copper sulfate, 233–234, 234f
hydrogen cyanide, 230, 231f
nickel sulfate, 234, 235f, 236
process waste characteristics, 229–230
sodium dichromate, 231, 232f, 233
Chronic exposure, 145
Chronic health effect, 145
Cipolletti weir, 262, 262f
Cleaning and washing, inspection activities and areas, 401
food service areas, 402
outdoor pressure washing, 402–403
tools and equipment, 402
vehicle washing or steam cleaning, 402
Cleanout, 424
Clean Water Act (CWA), 12, 381, 508
Closed-pipe flow-metering systems, flow monitoring, 275
differential pressure systems, 278, 279f
emagnetic flowmeters, 276, 276f
pitot tube meters, 278, 278f
propeller meters, 276, 277f
tube meters, 276, 276f
ultrasonic meters, 277–278, 277f
velocity modified flowmeters (VMFMs), 280
Coalescing plate interceptor (CPI), 396
COD. See Chemical oxygen demand (COD)
Collection system-use fees, math assignment, 459–465
Combined wastestream formula, math assignment, 497–501
Combustible gas monitoring system, 346
Combustible liquid, 143
Commercial composting, inspection activities and areas, 408
Compatible pollutants, 162, 174
Competent person, 135
Complexed metal precipitation, math assignment, 478–479
Compliance, 4, 301
Compliance programs, industrial waste, 592–593
administrative compliance programs, 594–595,
596f–598f, 599
administrative fine penalties, 599
suspension and revocation of permits, 600
enforcement response plan (ERP), 593–594
EPA guidance on enforcement, 600–601
misdemeanor and felony criminal actions, 600–601
Composite sample, 153, 303, 529
math assignment, 442–448
Comprehensive Environmental Response, Compensation, and
Liability Act (CERCLA) of 1980, 546
Concrete and asphalt production and recycling, 406–407
Confined space, 125–126, 295, 528
atmospheric hazards, 127–129
atmospheric testing results, 135
flammable and explosive gases, 131–134
humidity, 135
oxygen-deficient atmospheres, 134
toxic gases, 130–131
class A, 126
class B, 126
class C, 126
classification, 126–127
engulfment, 126
entering, 135–138, 137f, 138f
entry permit, 126
hazardous atmosphere, 127
non-permit, 126
permit-required, 126
Conservative pollutant, 10
Contaminants, 2
Continuous process, 362
Control agency (CA), 529
Conventional industrial pollutants, 300
Conventional pollutants, 3, 300
Cooking grease, storage, 401
Corrosive materials, 140–142
Corrugated plate interceptor (CPI), 46
counterflow rinsing, math assignment, 495–496
CPI. See Coalescing plate interceptor (CPI); Corrugated plate
interceptor (CPI)
Cradle to grave, 312, 546
Crude oil, 210
Crude petroleum, 208, 210
CWT facility. See Centralized waste treatment (CWT) facility
Cyanide
destruction, math assignment, 490–495
oxidation of, 318
D

DAF. See Dissolved air flotation (DAF)
DAFT. See Diffused air flotation treatment (DAFT)
Dairy products processing plant, 360–361
Danger, 139
Decibel, 149
Dental amalgam discharge prevention, 82–83, 83f
dental amalgam rule, 83–84
pretreatment standards, 84–85
reporting and recordkeeping requirements, 85–86
dental separators, 86
Detention basins, 394
Detention time, 101–103
math assignment, 465–467
Dewater, 27
Dialysis, 57
Differential pressure systems, 278, 279f
Diffused air flotation treatment (DAFT), 26
Digital readout, 239
Direct dischargers, 377, 512
Discharge prevention, dental amalgam, 82–83, 83f
dental amalgam rule, 83–84
pretreatment standards, 84–85
reporting and recordkeeping requirements, 85–86
dental separators, 86
Discharger
direct, 377
indirect, 377
Dissolved air flotation (DAF), 46, 347
Documentation, sampling procedures for wastewater, 429
chain-of-custody, 430, 431f
evidence for court actions, 429–430
report writing, 432
Domestic sewage study (DSS), 547
Drag out, 163
Drain inlet inserts, 395
Drip acid, 224
Driving and traffic, 123
traffic control in streets, 124, 124f, 125t
Dry pesticides, storage, 400
DSS. See Domestic sewage study (DSS)
Dust control, 398–399

E

EBCT. See Empty bed contact time (EBCT)
EEBA. See Emergency escape breathing apparatus (EEBA)
Effluent, 4
Electrical hazards, 150, 151f
Electrodialysis, 38, 57
Electroless plating, 185
Electrolytic recovery, 60
Electromagnetic flowmeters, 276, 276f
Electroplating, 185
Electrowinning, 60
Elutriation, 73
Emergency escape breathing apparatus (EEBA), 125
Emergency response preparedness, 627
emergency responses, 634
accidental spill, 634–636
notification, 634
unknown material reported in collection system, 636–637
limiting incident impact, 637
enforcement, 639
plant preparedness, 639
removal of material, 637
treatment in collection system, 638–639
maintaining control of the incident, 632
affected area determination, 634
identify the material, 633–634
initial response, 632–633
planning, 627–629
laws and regulations, 629–630
notification list, 630–632, 631t
preventing explosive conditions, 640
detecting combustible gas, 658–659
factors affecting flammability, 642–648, 644t
fire and combustion types and effects, 640–642
flammable materials discharge estimation, 648–658
photoionizer and organic vapor analyzer characteristics, 659–661
screening for dangerous compounds, 658
total atmospheric vapor and gas concentrations and protection level, 661–662
instrument sensitivity, 662
Empty bed contact time (EBCT), 26
Enforcement reports, 378–380
Enforcement response plan (ERP), 519, 593–594
Entrain, 277
Entry permit, confined space, 126
Environmental Protection Agency (EPA), 2, 508–509
Multi-Sector General Permit (MSGP), 397
EPA. See Environmental Protection Agency (EPA)
EPA reporting requirements, 558–562
baseline monitoring reports (BMR), 559–560
compliance schedule, 560
final compliance report, 560
hazardous waste disposal reporting, 561–562
notification of violations or discharge changes, 561
periodic compliance reports, 560–561
reporting special problems, 561
Erodible materials, storage, 399–400
ERP. See Enforcement response plan (ERP)
Evaporation, non-solar, 52
Explosive gases, 131–134

F

Facultative bacteria, 67
Facultative ponds, 67
Fats, oils, and grease (FOG), 74, 354
reduction, 74–75
bioremediation and bioaugmentation, 78–79
grease traps and interceptors, 75–78, 76f, 77f
maintenance best practices, 79–82
Federal Water Pollution Control Act 1972, 508
Fertilizers, storage, 400
Fire extinguishers, 119f
Fire point, 143
Flammable gases, 131–134
flammable liquids, 143
Flammable materials, solvents and, 142–143
Flammables, discharge of, 169–170
Flash point, 143
Flow metering system, 346
Flowmeters, electromagnetic, 276, 276f
Flow monitoring, 236–240
approximate measurement, 282–288
automatic sampler flow-proportioned pacing, 280–281, 281f
closed-pipe flow-metering systems, 275
differential pressure systems, 278, 279f
electromagnetic flowmeters, 276, 276f
pitot tube meters, 278, 278f
propeller meters, 276, 277f
turbine meters, 276, 276f
ultrasonic meters, 277–278, 277f
velocity modified flowmeters (VMFs), 280
open-channel flow measurement, 240–244, 240t, 241f, 242f
checking open-channel flowmeter accuracy, 271–275, 272f
instrumentation, 265–271, 265f, 266f, 268f
Palmer-Bowlus flumes, 244–246, 244f, 245f
Parshall flumes, 246–252, 246f, 247f, 248t
weirs, 252–265, 253f–255f
FOG. See Fats, oils, and grease (FOG)
Food and dairy products processing, industry-specific inspection procedures, 354
cheese manufacturing facility, 356–357, 356f, 357f
inspecting a dairy products processing plant, 360–361
inspection procedures, 359–360
meat packing and processing facility, 354–356, 355f
vegetable/fruit canning, 357–359, 358f, 359f
Food items, outdoor storage and processing of, 400
Food wastes, storage, 401

G
Gas chromatographs (GCs), 415
Gas detectors, 131
hydrogen sulfide, 129
Gases
flammable and explosive, 131–134
toxic, 130–131
Gasoline, 131
General Pretreatment Regulations, 549–578
Categorical Pretreatment Standards, 552–554, 552t–553t
EPA-regulated categories, 556–558, 557t
EPA reporting requirements, 558–562
categorical standards modification, 562–564
categorical standards types, 564–566, 565t
compliance calculations, 571–577
electroplating and metal finishing regulations, 568–571
electroplating category, 569
industry definitions, 568
metal finishing category, 569, 570t
Prohibited Discharge Standards, 550–551
total toxic organics (TTO), 566, 567t, 568
wastestream types, 566
Gloves, 147
Grab sample, 153, 303, 529
Graphite furnace atomic absorption (GFAA), 414
Grease interceptors, 75–78, 77f
Grease traps, 75–78, 76f
Ground fault circuit interrupters (GFCI), 150

H
Hazard Communication Standard (HCS), 118
Hazardous atmosphere, 127
Hazardous material management plan (HMMP), 123
Hazardous materials, 138–140, 139f
corrosive materials, 140–142
infectious agents, 144–145
poisonous and toxic chemicals, 143–144
protection from, 146–147
respiratory protective equipment, 148–149
solvents and flammable materials, 142–143
Hazardous waste, 2, 138, 312, 541
Hazardous waste laws, 591–592
Hazardous waste rules and regulations, 546
effects on pretreatment programs, 546–548
superclean site cleanup, 548
facilities for hazardous wastes, 548–549
Headworks, 550
Hexavalent chromium, 39
H-flumes, 240t, 263–265, 264f
High-pressure liquid chromatographs (HPLC), 415
Hot dip coating, 185
Humidity, atmospheric hazard, 135
Hydraulic capacity problems, 166
Hydrocyclone, 45, 45f
Hydrogen cyanide (HCN), 130
Hydrogen fluoride generators, 223
Hydrogen sulfide, 131
Hydrogen sulfide gas detectors, 129
Hydroxide precipitation, math assignment, 477–478

I
IAF. See Induced air flotation (IAF)
Immediately dangerous to life or health (IDLH), 126
Indirect discharger, 377
Induced air flotation (IAF), 46
Inductively coupled plasma (ICP) instruments, 414
Industrial inspection, 329–330
industry-specific inspection procedures, 333
chemical manufacturing, 350–354, 351f
conducting the inspection, 334–337
food and dairy products processing, 354–361
inspection preparation, 333–334
job shop electroplating facilities, 337–341
petroleum refineries, 341–347, 345f
pulp and paper industry, 348–350, 349f
rendering, 361–368
treatment alternatives, 362–369
on-site industrial inspection procedures, 330–331, 330t–331t
monitoring activities, 332–333
Industrial pretreatment (waste) inspector. See Pretreatment inspector
Industrial pretreatment technologies, 39
biological treatment, 66
activated sludge, 67
aerated lagoons, 67
anaerobic digestion, 68
stabilization ponds, 67
trickling filters, 68
chemical treatment, 60–61
 dechlorination, 66
 ion exchange, 63–65, 65f
 neutralization, 61–62, 61f
 oxidation and reduction, 65–66
 precipitation, 62–63, 62f, 63f
 land treatment, 68–69
 physical treatment, 40
 adsorption, 54–55, 54f, 55f
 distillation, 52, 53f, 54
 equalization, 40–41
 evaporation, 51–52, 52f, 53f
 filtration, 47, 49f–51f, 51
 flotation, 46–47, 46f, 47f
 physical processes, 57–60, 58f, 59f
 screening, 41–42, 42f
 sedimentation, 43–46, 43f–45f
 stripping, 55, 56f
 sludge treatment, 71–72
 conditioning, 72–73
 dewatering and drying, 73
 digestion, 72
 disposal, 73
 incineration and wet oxidation, 73
 sludge thickening, 72
 stabilization and solidification, 73
 thermal treatment, 69
 fluidized beds, 71
 liquid injection, 69–70
 rotary kilns, 70
 thermal technologies, 70–71
Industrial users (IUs), 294
Industrial waste compliance programs, 592–593
 administrative compliance programs, 594–595, 596f–598f, 599
 administrative fine penalties, 599
 suspension and revocation of permits, 600
 enforcement response plan (ERP), 593–594
 EPA guidance on enforcement, 595–596f
 individual conditions, 594–595
Industrial waste monitoring, 542–545
 monitoring by POTW personnel, 543–544
 reviewing analytical data, 544
 analytical data comparison, 544–545
 statistical data evaluation, 545
 self-monitoring, 543
Industrial waste pretreatment program approval, 520–521
Industrial waste survey, 297, 538
Industrial wastewater, 162–163
 compatible and noncompatible pollutants, 174
 concentrated solutions, 175–176
 continuous and intermittent discharges, 178–180
 dilute solutions, 174–175
 generation and discharge frequency, 177
 discharge during hours of operation, 177–178
 inspector's responsibility, 163–165
 pollutant concentration and mass, 180–182
 types of, 174–182
 utility system discharges, 180, 181f
 effluent and sludge disposal and reuse, 172–173
 treatment plant, 170–171
 hydraulic overload, 171
 influent variability, 171–172
 interference, 171, 173f
 permit review process, 538–540, 539f
 cooperation with other governmental entities, 541
 individual conditions, 540–541
 recordkeeping, 541–542
Industrial wastewaters, effects of, 165
 collection system, 166
 flammables, 169–170
 hydraulic capacity problems, 166
 odors, 167–168
 pH problems, 168–169
 plugging, 166–167
 temperature, 170
 industrial hazardous waste, 171
 industrial waste monitoring, 542–545
 monitoring by POTW personnel, 543–544
 reviewing analytical data, 544
 analytical data comparison, 544–545
 statistical data evaluation, 545
 self-monitoring, 543
 Industrial users (IUs), 294
 Industrial waste compliance programs, 592–593
 administrative compliance programs, 594–595, 596f–598f, 599
 administrative fine penalties, 599
 suspension and revocation of permits, 600
 enforcement response plan (ERP), 593–594
 EPA guidance on enforcement, 595–596f
 individual conditions, 594–595
 Industrial waste monitoring, 542–545
 monitoring by POTW personnel, 543–544
 reviewing analytical data, 544
 analytical data comparison, 544–545
 statistical data evaluation, 545
 self-monitoring, 543
 Industrial waste pretreatment program approval, 520–521
 Industrial waste survey, 297, 538
 Industrial wastewater, 162–163
 compatible and noncompatible pollutants, 174
 concentrated solutions, 175–176
 continuous and intermittent discharges, 178–180
 dilute solutions, 174–175
 generation and discharge frequency, 177
 discharge during hours of operation, 177–178
 inspector's responsibility, 163–165
 pollutant concentration and mass, 180–182
 types of, 174–182
 utility system discharges, 180, 181f
 effluent and sludge disposal and reuse, 172–173
 treatment plant, 170–171
 hydraulic overload, 171
 influent variability, 171–172
 interference, 171, 173f
 permit review process, 538–540, 539f
 cooperation with other governmental entities, 541
 individual conditions, 540–541
 recordkeeping, 541–542
 Industrial wastewaters, effects of, 165
 collection system, 166
 flammables, 169–170
 hydraulic capacity problems, 166
 odors, 167–168
 pH problems, 168–169
 plugging, 166–167
 temperature, 170
 industrial hazardous waste, 171
 industrial waste monitoring, 542–545
 monitoring by POTW personnel, 543–544
 reviewing analytical data, 544
 analytical data comparison, 544–545
 statistical data evaluation, 545
 self-monitoring, 543
 Infectious agents, 144–145
 Infiltration basins and trenches, 391, 391f
 Infiltration, stormwater, 382
 Inorganic chemical industries, manufacturing processes and wastewater generation, 218, 220
 aluminum fluoride, 227–228, 227f
 chlor-alkali, 220–221, 222f, 223
 hydrofluoric acid, 223–225
 titanium dioxide, 225–227, 226f
 Inorganic salts, 144
 Inspecting plants, 326
 facility inspection, 327–329
 initial meeting, 327
 preliminary work, 326
 summary, closing comments, and follow-up, 329
 Inspecting records, 408–409
 Inspection activities and areas, 397–398
 chemical applications, 405–406
 cleaning and washing, 401
 food service areas, 402
 outdoor pressure washing, 402–403
 tools and equipment, 402
 vehicle washing or steam cleaning, 402
 commercial composting, 408
 concrete and asphalt production and recycling, 406–407
 dust control, 398–399
 materials storage and transfer, 399
 loading/unloading of liquids or solids, 401
 outdoor storage and processing of food items, 400
Inspection activities and areas (continued)
- storing dry pesticides and fertilizers, 400
- storing erodible materials outdoors, 399–400
- storing food wastes and cooking grease, 401
- storing liquids in outdoor tanks, 399
- storing scrap and recycling materials, 400
- metal products manufacturing and post-processing, 407
- painting, finishing, and coating, 407
- roof vents and fugitive emissions, 406
- vehicle and equipment maintenance, 403
- repair and maintenance, 405
- stationary fueling operations, 403–404
- wood treatment and preservation, 407–408

Inspection levels, 310
- after the walk-through, 322–323
- effluent treatment equipment, 312–316, 312f, 313f
- findings and results, 323
- answering questions, 325–326
- complaints, 325
- enforcement, 324–325
- violations, 324
- general facility tour, 320–321
- in-plant wastewater control equipment, 316–320
- items and areas to inspect, 321
- outfall, 310–312, 311f

Inspection overview, 294–295
- assignment of personnel, 301–302
- tools and resources, 302–304
- content of an on-site industrial inspection, 298, 299t
- dealing with contacts, 307–310
- follow-up inspections, 300–301
- inspection frequency, 298, 300
- meeting the contact, 306–307
- regulatory intent, 296–298
- safety, 295–296

Inspection, pretreatment, 6–7
- adequate revenue collection, 11–12
- agency personnel protection, 8–9
- capital facilities protection, 8
- community protection, 9
- compliance assistance and regulation enforcement, 10–11
- environment protection, 9–10
- pollution prevention, 11

Inspections for stormwater compliance, 380–381
- best management practices (BMPs), 385, 386f, 387
- operational source control, 387–388
- structural source control, 389–390
- treatment, 391–396
- pollutants, sources, and effects, 383, 384f
- stormwater pollution prevention plans, 383, 385
- stormwater runoff and land development impacts, 381–382

Inspectors, 294
- pretreatment facility, 2, 12–15
- competencies, 15–17
- educational requirements, 15
- staffing, 17–18

Inspectors, math for, 87
- concentration, 103–104
- detention time, 101–103
- dilution and mixing, 105
- concentration, 106–109
- dilution ratio and factor, 105–106
- force and pressure, 92–97, 93f
- loading rate, 104–105
- significant figures, 87–88, 88t
- velocity and flow rate, 88–92, 91f
- work, head, and power, 97–100

Inspector's responsibility, for industrial wastewaters, 163–165

Integrated facility, 568

Integrated pest management (IPM), 406

Interceptors, grease, 75–78, 77f

Interference, 29, 174, 410, 529
- defined, 171
- from industrial discharges, 171, 173t

Investigation reports, 378, 379f

IPM. See Integrated pest management (IPM)

Iron and steel industry, manufacturing processes and wastewater generation, 213, 214f
- acid pickling, 216
- alkaline cleaning, 217
- coke making, 213
- cold forming, 216–217
- continuous casting, 216
- hot coating, 217
- hot forming, 216
- ironmaking, 215
- process waste characteristics, 217–218, 218t, 219f
- salt bath descaling, 216
- sintering, 213, 215
- steelmaking, 215
- vacuum degassing, 215

J

Jar test, 26

Job safety analyses (JSAs), 116

Job shop, 333

L

Laminar, 353

Land development impacts, stormwater runoff and, 381–382

Land treatment, industrial pretreatment technologies, 68–69

Land use ordinances, 591

Leather tanning and finishing, manufacturing processes and wastewater generation, 205, 206f
- beamhouse processes, 205
- finishing processes, 207
- process waste characteristics, 207–208, 209f
- tanyard processes, 205, 207

LEL. See Lower explosive limit (LEL)

LID. See Low impact development (LID)

Liquids storage, in outdoor tanks, 399

Loading rate, 104–105

Local collection system disposal codes, 590

Lower explosive limit (LEL), 127, 132, 302, 540
- and upper explosive limit (UEL), 128f

Lower flammable limit (LFL). See Lower explosive limit (LEL)

Low impact development (LID), 387, 391
Manhole, 125
Manhole lid, 153
Manhole vent, 153
Materials storage and transfer, 399
 loading/unloading of liquids or solids, 401
 outdoor storage and processing of food items, 400
 storing dry pesticides and fertilizers, 400
 storing erodible materials outdoors, 399–400
 storing food wastes and cooking grease, 401
 storing liquids in outdoor tanks, 399
 storing scrap and recycling materials, 400
Math assignment, 439
 alternative mass limit formula, 501–502
 collection system-use fees, 459–465
 combined wastestream formula, 497–501
 complexed metal precipitation, 478–479
 composite sampling, 442–448
 counterflow rinsing, 495–496
 cyanide destruction, 490–495
 detention time, 465–467
 hydroxide precipitation, 477–478
 pH adjustment, 474–477
 pH neutralization, 467–474
 pollutant mass, 439–440
 pollutant mass rate, 440–442
 reduction of hexavalent chromium, 479–490
 spill containment, 448–450
 toxic waste in collection systems, 450–454
 waste strength monitoring, 454–459
Meat packing and processing facility, 354–356, 355f
Mechanical plating, 185
Media filters, 395, 395f
Mercaptans, 210, 343, 346, 634
Mercury cell process, 221
Mercury-containing amalgam wastes, 83
Mercury pollution, 82
Metal finishing industries, manufacturing processes and wastewater generation, 183, 184f
 anodizing, 186
 bright dipping, 186, 187f
 cleaning and surface preparation, 183, 185
 etching and chemical milling, 186
 machining, 183
 plating and coating, 185
 process waste characteristics, 186–187
 wastewater generation, 187–189
Metal plating process, 162
Metal products manufacturing and post-processing, 407
Meters. See also specific types of meter
 pitot tube, 278, 278f
 propeller, 276, 277f
 turbine, 276, 276f
 ultrasonic, 268–269, 269f, 270f
 venturi, 278, 279f
MSGP. See Multi-Sector General Permit (MSGP)
Multi-gas monitor, 129f
Multi-Sector General Permit (MSGP), 383
EPA, 397
Mutagenic substance, 145, 630

Nappe, 252
National Fire Prevention Association (NFPA), 143
National Institute of Occupational Safety and Health (NIOSH), 156
National Pollutant Discharge Elimination System (NPDES) discharge, 322
National Pollutant Discharge Elimination System permit (NPDES permit), 6, 164, 343, 511
Natural Resources Defense Council, Inc. (NRDC) vs. Train, 556
Neutral sulfite semi-chemical (NSSC) pulping process, 195
Nonbiodegradable substances, 551
Noncompatible pollutants, 162, 174
Nonintegrated facility, 568
Non-permit confined space, 126
Non-solar evaporation, 52
Notice, 139
NPDES permit. See National Pollutant Discharge Elimination System permit (NPDES permit)

Occupational Safety and Health Act (OSHA) of 1970, 630
Occupational Safety and Health Administration (OSHA), 116, 118, 156, 318
Odors, collection system, 167–168
Oil/water separators, 395, 396f
On-the-job safety training, 117
Open-channel flow measurement, monitoring, 240–244, 240t, 241f, 242f
 checking open-channel flowmeter accuracy, 271–275, 272f
 instrumentation, 265–271, 265f, 266f, 268f
Palmer-Bowlus flumes, 244–246, 244f, 245f
Parshall flumes, 246–252, 246f, 247f, 248t
 weirs, 252–265, 253f–255f
Operational source control, best management practices (BMPs), 387–388
Organic vapor analyzers (OVAs), 659–660
ORP. See Oxidation-reduction potential (ORP)
OSHA. See Occupational Safety and Health Administration (OSHA)
Osmosis, reverse, 38, 58, 59f
Outfalls, 303
OVAs. See Organic vapor analyzers (OVAs)
Oxidation of cyanide, 318
Oxidation-reduction potential (ORP), 6, 304
 controllers, 65
Oxygen deficiency, 127, 295
Oxygen-deficient atmospheres, 134
Oxygen enrichment, 127, 295, 640

Palmer-Bowlus flumes, 238f, 240t, 244–246, 244f–246f
Papermaking, 196
Parshall flumes, 239f, 240t, 246–252, 246f, 247f, 248t
Parts per million (ppm), 549
Passivating, 185, 341
Index

Pass-through, 29, 410, 529
Pathogens, 29, 117, 550
Peak demand, 22
People and the environment, protection, 2–4
General Pretreatment Regulations, 4–5
source monitoring and compliance, 5–6
records and reports, 6
Permissible exposure limit (PEL), 120
Personal protective equipment (PPE), 146, 146f
Petroleum refineries, 341
general process, 341–347, 344f, 345f
inspection procedures, 346–347
pollutants, 342–343, 346
Petroleum refining industry, manufacturing processes and wastewater generation, 208, 210, 211f
process waste characteristics, 210, 212f
pH, 4, 140, 165
adjustment, math assignment, 474–477
monitor, 346
neutralization, math assignment, 467–474
test paper, 360
Phosphate coating, 185
Photoionizer, 660–661
Photoresist, 131
Physical hazards, 149–150, 296
electrical hazards, 150, 151f
protection from, 152
Physical treatment, industrial pretreatment technologies, 40
adsorption, 54–55, 54f, 55f
distillation, 52, 53f, 54
equalization, 40–41
evaporation, 51–52, 52f, 53f
filtration, 47, 49f–51f, 51
flocculation, 46–47, 46f, 47f
physical processes, 57–60, 58f, 59f
screening, 41–42, 42f
sedimentation, 43–46, 43f–45f
stripping, 55, 56f
Pickle, 176, 323
Pilot-scale study, 25
Pitot, 239
Pitot tube meters, 278, 278f
Poisonous and toxic chemicals, 143–144
Pollutant mass, math assignment, 439–440
Pollutant mass rate, math assignment, 440–442
Pollutants, 2, 317, 508
compatible, 162, 174
conservative, 10
conventional, 3, 300
conventional industrial, 300
priority, 4
toxic, 3, 55t, 509, 554
Pollution control regulations, 508
Environmental Protection Agency (EPA), 508–509
definitions, 512
delegation of federal authority, 509–512
organizational structure, 509
Pollution prevention, 3, 536–537
Pollution prevention programs, 3
Polychlorinated biphenyls, 54
Polyelectrolyte, 26
Polymer, 45
Porous pavement, 394
Portable multi-gas monitor, 129f
POTWs. See Publicly owned treatment works (POTWs)
Pozzolanic process, 73
PPE. See Personal protective equipment (PPE)
ppm. See Parts per million (ppm)
Pressure sensor, 267
Pressure systems, differential, 278, 279f
Pretreatment Compliance Monitoring and Enforcement Guidance, 529
Pretreatment facilities, 19
flexibility, 22
hazardous waste requirements, 22
management commitment and support, 23
operating plans, log sheets, and O&M manuals, 22–23
operator training, 23
performance, 19–21
maintainability, 21
reliability, 21
safety and OSHA requirements, 22
site selection, 21
Pretreatment facility inspectors, 2, 12–15
competencies, 15–17
educational requirements, 15
staffing, 17–18
Pretreatment inspection, 6–7
adequate revenue collection, 11–12
agency personnel protection, 8–9
capital facilities protection, 8
community protection, 9
compliance assistance and regulation enforcement, 10–11
environment protection, 9–10
pollution prevention, 11
Pretreatment inspector, 2, 294
Pretreatment managers, technical capabilities of, 513
Pretreatment program database, 531
field records for industrial waste personnel, 532
internet, 532
laboratory records, 532
preparing reports and industrial waste documents, 532
Pretreatment program elements, 527
discharge permits, 527
inspection, 527–528
inspection frequency, 528–529
staffing requirements, 528
monitoring industrial wastewater discharges, 529
technical expertise, 530–531, 530t
Pretreatment program planning, 512–537
comparing programs, 519–520
compliance and enforcement programs, 533–534
enforcement, 518–519
funding, 521–522
revenue collection, 522
industrial development, 517–518
industry charges, 522–526
property taxes, 522–523
proportional charges, 523–526
water bill charges, 523
laboratory analyses, 535, 535f
legal assistance, 535–536
pollution prevention, 536–537
professional ethics, 532–533
wastewater treatment plant size and staffing needs, 513
outside assistance, 517
resources required, 514–516, 516t–517t
technical capabilities of pretreatment managers, 513
Pretreatment Standards for New or Existing Sources (PSNS or PSES), 512
Pretreatment technology, 24
characteristics, 28
control and monitoring guidelines, 30–31
flow, 27–28
mandated pretreatment standards, 28–29
pollutants and toxic conditions, 29
inorganic pollutants, 29
organic pollutants, 29
pH, 30
sulfide compounds, 30
temperature, 30
treatability studies review, 25
biological treatment, 27
physical and chemical treatment, 25–26
sludge treatment, 27
treatment and discharge objectives, 27
wastewater source and discharge characteristics, 24–25, 24t
Pulp and paper industry, 348
inspection procedures, 350
pollutants, 348
wastewater, 349–350, 349f
Pulping, 193–196
Pulp, paper, and paperboard industries, manufacturing processes
and wastewater generation, 193, 194f
papermaking, 196
process waste characteristics, 196–198, 198f, 199f
pulpers, 193–196
raw material preparation, 193

R

Rain gardens, 393, 393f
Raw material preparation, 193
RCRA. See Resource Conservation and Recovery Act (RCRA)
RCRA Public Law 94-580, 312
Reagent, 185, 316
Records, inspecting, 408–409
Rectangular weirs, 258–259, 258f, 259f, 261f
Recycle, 4, 162
Recycling materials, storing scrap and, 400
Reduction of hexavalent chromium, math assignment, 479–490
Refineries, petroleum, 341
general process, 341–347, 344f, 345f
inspection procedures, 346–347
pollutants, 342–343, 346
Refinery wastewaters, sources and treatment of, 344f
Rendering, industry-specific inspection procedures, 361–362
equipment and processes, 362, 363f–365f, 365–366
pollutants, 368
water use and wastewater characteristics, 366–368, 367f
Report writing, 377, 432
enforcement reports, 378–380
routine reports, 377–378
special investigation reports, 378, 379f
Representative sample, 297
Resource Conservation and Recovery Act (RCRA), 7, 546
regulations, 165
Respiratory protective equipment, 148–149
Responsibility, 513
Return sludge, 433
Reuse, 28, 162
Reverse osmosis (RO), 38, 58, 59f
Right-to-know laws, 118, 629
RO. See Reverse osmosis (RO)
Roof vents and fugitive emissions, 406
Routine reports, 377–378

S

Safe driving, 123
Safety, 116
regulations and references, 156–157
Safety data sheet (SDS), 118, 121t–122t, 308
safety equipment, 119, 119f
Safety program, 116
equipment and supplies, 118–120
preparing for an inspection, 120–123
responsibilities, 116–118
Safety training, 117
Salts, inorganic, 144
Sampling hazards, 152
manhole safety, 152–153
Sampling procedures for wastewater, 409
collected samples, 413–414
analysis, 414–416
containers, 416, 417t, 418
preservation, 418
documentation, 429
chain-of-custody, 430, 431f
evidence for court actions, 429–430
report writing, 432
quality assurance/quality control (QA/QC) procedures, 435–437
laboratory QA/QC procedures, 437–438
safety precautions, 409–410
Sampling procedures for wastewater (continued)

sample collection, 419
field tests, 426
grab and composite samples, 427
labeling samples, 427–428
obtaining a representative sample, 423–425
obtaining the sample, 419–423
sample storage, 428–429
sampling for total toxic organic analyses, 425–426
sampling program development, 410–412
hypothetical situation, 410–411
sample quantity and intervals, 412–413
tracing illegal discharges, 432–435
Sanitary sewer, 299
Sanitary sewer overflow (SSO), 74
Scrubber water, 224
SDS. See Safety data sheet (SDS)
Secondary fibers pulping, 195
Semiconductor industry, hazards, 155
Sensor, pressure, 267
Shock hazards, 150
Shock load, 40
Significant industrial users (SIUs), 298, 510
Significant noncompliance, 534
SIUs. See Significant industrial users (SIUs)
Sludge treatment, industrial pretreatment technologies, 71–72
conditioning, 72–73
dewatering and drying, 73
digestion, 72
disposal, 73
incineration and wet oxidation, 73
sludge thickening, 72
stabilization and solidification, 73
Slag, 300, 561
Solvent, 312
extraction, 59
and flammable materials, 142–143
management plan, 17, 566
Solvent vapors, inhalation of, 142
Source control and pollution prevention, 31
conservation, recovery, and reuse, 33
housekeeping and materials management, 33–35, 34f
modification to reduce use, 35–37, 36f, 37f
physical recovery and separation, 37–39
waste exchange and management, 39
wastewater segregation and treatment, 39
manufacturing process modifications, 31
manufacturing processes, modify, 32
operating guidelines, modify, 33
process equipment, modify, 32
raw materials change, 32
Spectrophotometers, atomic absorption (AA), 414
Spill containment, math assignment, 448–450
SSO. See Sanitary sewer overflow (SSO)
Stormwater, 380
infiltration, 382
regulations, 592
Stormwater compliance, inspections for, 380–381
best management practices (BMPs), 385, 386f, 387
operational source control, 387–388
structural source control, 389–390
treatment, 391–396
pollutants, sources, and effects, 383, 384f
stormwater runoff and land development impacts, 381–382
Stormwater pollution prevention plans (SWPPPs), 381, 383, 385
Stormwater runoff, 381
and land development impacts, 381–382
Structural source control, best management practices (BMPs), 389–390
Sulfide corrosion, 166, 166f
Sulfide monitor, 346
Sump, 336
Sump card, 303
Superfund Act, 546
Superfund law, 546
Surface loading rate, 44
Suspected solids, 3, 162, 348, 523
SWPPPs. See Stormwater pollution prevention plans (SWPPPs)
Synergistic reaction, 145
T
Tank laws, underground, 590–591
Technology-based standards, 4, 554
Teratogenic substance, 145, 630
Thermal treatment, industrial pretreatment technologies, 69
fluidized beds, 71
liquid injection, 69–70
rotary kilns, 70
thermal technologies, 70–71
Threshold limit value (TLV), 32, 130
Time-weighted average (TWA), 140
TLV. See Threshold limit value (TLV)
Totalizer, 239, 346
Total toxic organics (TTO), 566, 567f, 568
requirements, 145
Toxic, 513
Toxic chemicals, poisonous and, 143–144
Toxic gases, 130–131
Toxicity, 11, 165, 523
Toxic pollutants, 3, 509, 554
priority, 555t
Toxic substance, 2, 3, 120, 295
Toxic Substances Control Act (TSCA) of 1976, 145
Toxic waste in collection systems, math assignment, 450–454
Traffic control in streets, 124, 124f, 125f
Traffic hazards, 296
Trapezoidal (Cipolletti) sharp-crested weir, 262, 262f
Trichloroethylene (TCA), 131
TTO. See Total toxic organics (TTO)
Turbine meters, 276, 276f
TWA. See Time-weighted average (TWA)
U
UEL. See Upper explosive limit (UEL)
Ultrafiltration, 38, 58, 59f
Ultrasonic meter, 268–269, 269f, 270f, 277–278, 277f
Ultraviolet (UV), 149
Ultraviolet-visible spectrophotometers (UV-VIS), 414
Underground tank laws, 590–591
Index

Uplift force, 97
Upper explosive limit (UEL), 127, 640
and lower explosive limit (LEL), 128f
Upper flammable limit (UFL). See Upper explosive limit (UEL)
Urban water cycle, 382f
UV-VIS. See Ultraviolet-visible spectrophotometers (UV-VIS)

V
Vapor cloud explosion (VCE), 641
VCE. See Vapor cloud explosion (VCE)
Vegetable/fruit canning, 357–359
Vegetated swales, 392, 393f
Velocity and flow rate, 88–92, 91f
Velocity modified flowmeters (VMFMs), 280
Venturi meter, 278, 279f
VMFMs. See Velocity modified flowmeters (VMFMs)
V-notch weir, 239f, 252, 253f, 256, 256f
standard discharge formulas for, 256t–257t
Volatile, 163, 410, 637
Volatile solids, 348

W
Warning, 139
Waste, hazardous, 2, 138
Waste strength monitoring, math assignment, 454–459
Wastewater collection system, 2
Wastewater facilities, 579
Wastewater generation, manufacturing processes and, 182
battery manufacturing, 198, 200, 201f, 202f
ancillary operations, 203
anodes, 200
cathodes, 200, 203
process waste characteristics, 203, 204f
chrome pigments industry, 228–229, 229f
copper sulfate, 233–234, 234f
hydrogen cyanide, 230, 231f
nickel sulfate, 234, 235f, 236
process waste characteristics, 229–230
sodium dichromate, 231, 232f, 233
inorganic chemical industries, 218, 220
aluminum fluoride, 227–228, 227f
chlor-alkali, 220–221, 222f, 223
hydrofluoric acid, 223–225
titanium dioxide, 225–227, 226f
iron and steel industry, 213, 214f
acid pickling, 216
alkaline cleaning, 217
coke making, 213
cold forming, 216–217
continuous casting, 216
hot coating, 217
hot forming, 216
ironmaking, 215
process waste characteristics, 217–218, 218t, 219f
salt bath descaling, 216
sintering, 213, 215
steelmaking, 215
vacuum degassing, 215
leather tanning and finishing, 205, 206f
beamhouse processes, 205
finishing processes, 207
process waste characteristics, 207–208, 209f
tanyard processes, 205, 207
metal finishing industries, 183, 184f
anodizing, 186
bright dipping, 186, 187f
cleaning and surface preparation, 183, 185
etching and chemical milling, 186
machining, 183
plating and coating, 185
process waste characteristics, 186–187
wastewater generation, 187–189
petroleum refining industry, 208, 210, 211f
process waste characteristics, 210, 212f
printed circuit board manufacturing, 189–191, 190f
process waste characteristics, 191, 192f
pulp, paper, and paperboard industries, 193, 194f
papermaking, 196
process waste characteristics, 196–198, 198f, 199f
pulping, 193–196
raw material preparation, 193
Wastewater influents, 79
Wastewater ordinance, 302, 527, 578–579
approval process, 582–583
EPA minimum requirements, 579–580
industrial wastewater prohibitions, 580–581
general provisions, 581–582
specific provisions, 582
local ordinances, 589
building codes, 590
hazardous waste laws, 591–592
land use ordinances, 591
local collection system disposal codes, 590
stormwater regulations, 592
underground tank laws, 590–591
minimum pretreatment program requirements, 584
enforcement response, 588
legal authority, 584–586
local limits, 588
procedures, 586–588
significant industrial user database, 589
staffing and funding, 588
pretreatment program implementation, 589
Wastewater, sampling procedures for, 409
collected samples, 413–414
analysis, 414–416
containers, 416, 417t, 418
preservation, 418
documentation, 429
chain-of-custody, 430, 431f
evidence for court actions, 429–430
report writing, 432
quality assurance/quality control (QA/QC) procedures, 435–437
laboratory QA/QC procedures, 437–438
safety precautions, 409–410
sample collection, 419
field tests, 426
grab and composite samples, 427
labeling samples, 427–428
Wastewater, sampling procedures for (continued)
 obtaining a representative sample, 423–425
 obtaining the sample, 419–423
 sample storage, 428–429
 sampling for total toxic organic analyses, 425–426
 sampling program development, 410–412
 hypothetical situation, 410–411
 sample quantity and intervals, 412–413
 tracing illegal discharges, 432–435
Wastewaters, industrial, 162–163
 compatible and noncompatible pollutants, 174
 concentrated solutions, 175–176
 continuous and intermittent discharges, 178–180
 dilute solutions, 174–175
 effects of (see Industrial wastewaters, effects of)
 generation and discharge frequency, 177
 discharge during hours of operation, 177–178
 inspector's responsibility, 163–165
 pollutant concentration and mass, 180–182
 types of, 174–182
 utility system discharges, 180, 181t
Wastewater treatment plant, 2–3
 size and staffing needs, 513
 outside assistance, 517
 resources required, 514–516, 516t–517t
 technical capabilities of pretreatment managers, 513
Water cycle, urban, 382f
Water Quality Act, 12
Weirs, 240t
 Cipolletti, 262, 262f
 rectangular, 258–259, 258f, 259f, 261f
 V-notch, 239f, 252, 253f, 256, 256f
 standard discharge formulas for, 256t–257t
Wood pulp bleaching, 195–196
Wood treatment and preservation, 407–408
Writing, report, 377, 432
 enforcement reports, 378–380
 routine reports, 377–378
 special investigation reports, 378, 379f

Z

Zeta potential, 26