Table of Contents

Chapter 1

Introduction to Wastewater Treatment 1

1.1 **Wastewater as a Resource** 2

1.1.1 Urban Water Cycle 3

1.2 **Wastewater Components** 5

1.2.1 Effects of Untreated Waste Discharges 5

1.2.2 Types of Solids in Wastewater 8

1.3 **Clean Water Act** 10

1.3.1 NPDES Programs 10

1.4 **Collection, Treatment, and Reuse Facilities** 12

1.4.1 Wastewater Collection and Conveyance Systems 12

1.4.1.1 Types of Collection Systems 14

1.4.2 Wastewater Treatment 16

1.4.2.1 Preliminary Treatment 18

1.4.2.2 Flow Measuring Devices 20

1.4.2.3 Primary Treatment 22

1.4.2.4 Secondary Treatment 24

1.4.2.5 Disinfection 28

1.4.2.6 Tertiary Treatment 31

1.4.2.7 Lagoon Systems 35

1.4.3 Effluent Discharge, Reclamation, and Reuse 36

1.4.3.1 Solids Handling, Disposal, and Reuse 37

1.4.3.2 Odor Control 40

1.5 **Sampling and Laboratory Analysis** 41

1.6 **Electrical Power and Instrumentation Control** 42

1.7 **Maintenance Program** 42

1.7.1 Asset Management Program 43

1.8 **Safety Program** 43

1.8.1 Accident Prevention 44

1.8.2 Types of Safety Hazards 45

1.9 **Wastewater Treatment Plant Operators** 46

1.10 **Math Assignment** 50

1.11 **Additional Resources** 50

Chapter Review 51

Chapter 2

Safety 55

2.1 **Creating a Safe Workplace** 56

2.2 **Safety Program** 57

2.2.1 Types of Hazards 58

2.2.2 Reporting Incidents 60

2.3 **Prevention** 62

2.3.1 Operator Safety 62

2.3.1.1 Respiratory Protection 63

2.3.1.2 Personal Protective Equipment 64

2.3.1.3 Noise Exposure 67

2.3.2 Training Program 70

2.3.2.1 Tailgate Safety Meetings 71

2.3.3 Emergency Preparedness and Response 72

2.4 **Water Safety** 73

2.4.1 Infections and Diseases 74

2.4.2 Radiological Hazards 74

2.5 **Facility Maintenance Safety** 75

2.5.1 Cleaning 75
Table of Contents

2.5.2 Painting 76
2.5.3 Crane Operation 77
2.5.4 Explosive Gas Mixtures 77
2.5.5 Confined Spaces 78
2.5.6 Power Tools 82
2.5.7 Welding 84
2.5.8 Safety Valves 85

2.6 Vehicle Operation and Maintenance Safety 86
2.6.1 Vehicle Operation 86
 - 2.6.1.1 Forklifts 87
2.6.2 Vehicle Maintenance 87

2.7 Electrical Equipment Safety 89
2.7.1 Current and Voltage 89
2.7.2 Avoiding Electric Shock 90
2.7.3 Emergency Procedures 92
2.7.4 Transformers 92
2.7.5 Electric Starters 93
2.7.6 Electric Motors 93
2.7.7 Instrumentation 94
2.7.8 Control Panels 95
2.7.9 Lockout/Tagout Procedure 95

2.8 Fire Prevention and Protection 97
2.8.1 Classification of Fires and Extinguishers 98
 - 2.8.1.1 Fire Extinguisher Operation and Maintenance 99
 - 2.8.1.2 Fire Hoses 100
2.8.2 Storage of Flammables 100
2.8.3 Fire Exits 100

2.9 Chemical Handling 101
2.9.1 Acids 105
 - 2.9.1.1 Glacial Acetic Acid 107
 - 2.9.1.2 Hydrochloric Acid 108
 - 2.9.1.3 Nitric Acid 108
 - 2.9.1.4 Sulfuric Acid 110
2.9.2 Bases 111
 - 2.9.2.1 Calcium Hydroxide and Calcium Oxide 111
 - 2.9.2.2 Sodium Hydroxide 111
 - 2.9.2.3 Hypochlorite 112
 - 2.9.2.4 Sodium Carbonate 113
2.9.3 Gases and Vapors 113
 - 2.9.3.1 Chlorine 115
 - 2.9.3.2 Carbon Dioxide 117
 - 2.9.3.3 Sulfur Dioxide 118
 - 2.9.3.4 Oxygen 118
 - 2.9.3.5 Gasoline Vapor 119
 - 2.9.3.6 Carbon Monoxide 119
 - 2.9.3.7 Hydrogen 119
 - 2.9.3.8 Methane 119
 - 2.9.3.9 Hydrogen Sulfide 120
 - 2.9.3.10 Ethane 120
2.9.4 Salts 120
 - 2.9.4.1 Aluminum Sulfate 121
 - 2.9.4.2 Ferric Chloride 121
 - 2.9.4.3 Ferric Sulfate 121
 - 2.9.4.4 Ferrous Sulfate 122
 - 2.9.4.5 Sodium Aluminate 122
2.9.5 Powders 122
 - 2.9.5.1 Activated Carbon 123
2.9.6 Chemical Storage Drains 124

2.10 Collection System Safety 124
2.10.1 Traffic Hazards 124
2.10.2 Manholes 125
2.10.3 Excavations 126
2.10.4 Cleaning Tools and Equipment 129
2.10.5 Pumping Stations 129

2.11 Additional Resources 131

Chapter Review 132

Chapter 3

Preliminary Treatment 135

3.1 Purpose of Preliminary Treatment 136

3.2 Safety Hazards 137

3.3 Flow Measurements 140

3.3.1 Flow Measuring Devices 142
3.3.2 Location of Measuring Devices 146
3.3.3 Conversion and Readout Instruments and Controllers 147
Table of Contents

4.9.1.2 Construction 229
4.9.1.3 Solids Handling 229
4.9.2 Pumps and Flow Controls 229
4.9.3 Operating Equalization Tanks 230
4.9.4 Evaluating Equalization 231

4.10 Math Assignment 232

Chapter Review 233

Chapter 5
Activated Sludge Systems
(Secondary Treatment) 237

5.1 Introduction to Secondary Treatment 238

5.2 The Activated Sludge Process 240

5.2.1 Process Description 240
 5.2.1.1 Aeration Tanks 242
 5.2.1.2 Secondary Clarifiers 244
5.2.2 Safety 245
 5.2.2.1 Aeration Tanks and Clarifiers 247
 5.2.2.2 Pump Rooms 248
 5.2.2.3 Surface Aerators 249
 5.2.2.4 Blowers 250
 5.2.2.5 Blower Air Filters 250
 5.2.2.6 Air Distribution System 250
 5.2.2.7 Air Headers and Diffusers 250
5.2.3 Activated Sludge Process Control 252
5.2.4 Collection System Variables 254
5.2.5 Treatment Plant Operational Variables 257
 5.2.5.1 Influent Characteristics 257
 5.2.5.2 Activated Sludge Process Variables 258
 5.2.5.3 Waste Activated Sludge 278
5.2.6 Primary Control Points 279
 5.2.6.1 Maintaining the Microorganism Population 280
 5.2.6.2 Controlling Dissolved Oxygen 281
 5.2.6.3 Managing Solids Separation in Secondary Clarifiers 282
5.2.7 Process Monitoring, Control, and Data Collection 285
 5.2.7.1 Monitoring Tools 285
 5.2.7.2 Automated Control Systems 290
5.2.7.3 Measurements, Testing, and Inspections 292
5.2.7.4 Process Inspection 294
5.2.7.5 Laboratory Testing 296
5.2.8 Recordkeeping 298

5.3 Process Modifications 301

5.3.1 Conventional BOD Removal Processes 301
5.3.2 Biological Nutrient Removal Processes 303
5.3.3 Low-Rate or Extended Aeration ASPs 304
5.3.4 High-Rate ASPs 305
5.3.5 Complete Mix ASPs 305
5.3.6 Plug Flow ASPs 307
5.3.7 Step-Feed ASPs 307
5.3.8 Tapered Aeration ASPs 309
5.3.9 Sequencing Batch Reactors 309
5.3.10 Oxidation Ditches 312
5.3.11 Contact Stabilization ASPs 314
5.3.12 Kraus Process 315
5.3.13 Selectors 316
5.3.14 High-Purity Oxygen ASPs 316
5.3.15 Membrane Bioreactors 318
5.3.16 Package Plants 320

5.4 Normal Operation 322

5.4.1 Operational Strategy 323
5.4.2 Routine Operator Tasks 326
5.4.3 Process Performance Monitoring 327
5.4.4 Process Data Analysis and Review 329
5.4.5 Controlling the Process 332
5.4.6 Process Adjustment and Operator Response 333
 5.4.6.1 Process Adjustment Example 336

5.5 Abnormal Operation 340

5.5.1 Major Causes of Abnormal Operations 341
 5.5.1.1 Hydraulics 342
 5.5.1.2 Water Quality 342
 5.5.1.3 Equipment Malfunction 344
 5.5.1.4 Plant Changes 344
 5.5.1.5 Process Control 344
 5.5.1.6 Environmental Changes 345
 5.5.1.7 Design Deficiency 345
Table of Contents

5.5.2 Typical Operational Problems and Solutions 346

5.5.3 Problems in Aeration Tanks 347
 5.5.3.1 Toxicity to Organisms 347
 5.5.3.2 Aeration System Problems 347
 5.5.3.3 Aeration Tank Foaming 350
 5.5.3.4 Stiff White Foam 351
 5.5.3.5 Brown Foam 352
 5.5.3.6 Very Dark or Black Foam 354

5.5.4 Problems in Secondary Clarifiers 355
 5.5.4.1 Sludge Bulking 356
 5.5.4.2 Septic Sludge 359
 5.5.4.3 Clumping/Rising Sludge 360
 5.5.4.4 Ashing 361
 5.5.4.5 Pinpoint Floc 361
 5.5.4.6 Straggler Floc 362
 5.5.4.7 Cloudy Secondary Effluent 362

5.5.5 Troubleshooting 365

5.5.6 Equipment Operation Under Abnormal Conditions 368

5.6 Microbiology for Activated Sludge 381

5.6.1 Microorganisms in Activated Sludge 382
 5.6.1.1 Bacteria 383
 5.6.1.2 Protozoa 385
 5.6.1.3 Rotifers 388
 5.6.1.4 Viruses, Fungi, and Algae 388

5.6.2 Microscopic Examination of Activated Sludge 389
 5.6.2.1 Sample Collection 389
 5.6.2.2 Sample Preparation 390
 5.6.2.3 Using Microscopes 391
 5.6.2.4 Microscopic Observations 394
 5.6.2.5 Frequency of Microscopic Observation 400

5.6.3 Interpretation of Results 400
 5.6.3.1 Desirable and Undesirable Microorganisms 401
 5.6.3.2 Comparing Microscopic Results 403
 5.6.3.3 Changes in Numbers or Types of Microorganisms 403

5.6.4 Response to Results 404
 5.6.4.1 Making a Process Change 405

5.7 Startup and Shutdown 407

5.7.1 Hydraulics 408

5.7.2 Electrical 408

5.7.3 Instrumentation and Control 409

5.7.4 Startup After Initial Construction 415
 5.7.4.1 Inspecting New Equipment 415
 5.7.4.2 Process Startup Procedures 422

5.7.5 Long-Term Shutdown and Startup Procedures 426
 5.7.5.1 Shutdown Procedures 426
 5.7.5.2 Startup Procedures 427

5.7.6 Short-Term Shutdown and Startup Procedures 429

5.7.7 Equipment Startup and Shutdown 430
 5.7.7.1 ASP Influent and Effluent Flow Control Equipment 431
 5.7.7.2 Surface Aerators and Mixers 432
 5.7.7.3 Positive Displacement Blowers 432
 5.7.7.4 Centrifugal Blowers 433
 5.7.7.5 Turbo Blowers 433
 5.7.7.6 Air Distribution System 433
 5.7.7.7 Air Headers and Diffusers 433
 5.7.7.8 RAS/WAS Pumping System 434
 5.7.7.9 Secondary Clarifier Sludge and Scum Collector 434

5.8 Maintenance 436

5.8.1 Influent/Effluent Flow Control Equipment 436

5.8.2 Tank Mixers 437

5.8.3 Surface Aerators 437

5.8.4 Diffused Aeration System 438
 5.8.4.1 Centrifugal Blowers 439
 5.8.4.2 Positive Displacement Blowers 442
 5.8.4.3 Air Distribution System 442
 5.8.4.4 Air Headers 442
 5.8.4.5 Diffusers 443

5.8.5 Secondary Clarifiers 444

5.8.6 RAS/WAS Pumping Systems 446
 5.8.6.1 Centrifugal Pumps 446
 5.8.6.2 Positive Displacement Pumps 447

5.8.7 Instruments 447

5.9 Reviewing Plans and Specifications 449

5.9.1 Review of Drawings 450
 5.9.1.1 General 450
 5.9.1.2 Civil 450
 5.9.1.3 Architecture and Structure 451
 5.9.1.4 Process and Mechanical 451
 5.9.1.5 Electrical, Instrumentation, and Control 452
5.9.2 Review of Specifications 453
 5.9.2.1 General 454
 5.9.2.2 Civil 454
 5.9.2.3 Architecture and Structure 455
 5.9.2.4 Process and Mechanical 455
 5.9.2.5 Electrical, Instrumentation, and Control 456

5.10 Math Assignment 457

5.11 Additional Resources 457

Chapter Review 458

Chapter 6
Fixed Film Processes (Secondary Treatment) 465

6.1 First Biological Treatment 466

6.2 Trickling Filters 466
 6.2.1 Media 469
 6.2.1.1 Rock Media 471
 6.2.1.2 Plastic Media 472
 6.2.2 Distribution System 474
 6.2.2.1 Containment Structure 479
 6.2.2.2 Underdrain System 481
 6.2.2.3 Filter Pump Station 483
 6.2.2.4 Secondary Clarifier 483
 6.2.2.5 Solids Processing Equipment 485
 6.2.3 Safety 485
 6.2.4 Process Monitoring and Control 486
 6.2.4.1 Organic Loading Rate 487
 6.2.4.2 Hydraulic Loading Rate 490
 6.2.4.3 Dosing Rate 492
 6.2.4.4 Recirculation Ratio 495
 6.2.4.5 Removal Efficiencies 497
 6.2.4.6 Oxygen Supply 498
 6.2.4.7 Sampling and Laboratory Analysis 501
 6.2.4.8 Daily Plant Monitoring 502
 6.2.5 Filter Classification 506
 6.2.5.1 Low-Rate 508
 6.2.5.2 Intermediate-Rate 509
 6.2.5.3 High-Rate 510
 6.2.5.4 Roughing 510
 6.2.5.5 Nitrifying Trickling Filters 510

6.2.6 Modes of Operation 511
6.2.7 Reviewing Plans and Specifications 513
6.2.8 Construction, Startup, and Shutdown 515
 6.2.8.1 During Construction 515
 6.2.8.2 Startup Procedures 516
 6.2.8.3 Shutdown Procedures 516
6.2.9 Operation and Maintenance 518
 6.2.9.1 Equipment Inspection and Preventive Maintenance 518
6.2.10 Troubleshooting 521
 6.2.10.1 Trickling Filter Process 521
 6.2.10.2 Upstream and Downstream Treatment Processes 527

6.3 Rotating Biological Contactors 529
 6.3.1 Components 530
 6.3.1.1 Media 530
 6.3.1.2 Drive Mechanism 534
 6.3.1.3 Tank 535
 6.3.1.4 Baffles 535
 6.3.1.5 Covers 536
 6.3.1.6 Influent/Effluent Piping 536
 6.3.1.7 Auxiliary Instrumentation 536
 6.3.2 Process Monitoring and Control 537
 6.3.2.1 Organic Loading Rate 538
 6.3.2.2 Hydraulic Loading Rate 539
 6.3.2.3 Oxygen Supply/Transfer 539
 6.3.2.4 Rotational Speed 540
 6.3.2.5 Disc Submergence 540
 6.3.2.6 Biofilm Thickness 540
 6.3.2.7 Recirculation Rate 541
 6.3.2.8 Water and Ambient Temperature 541
 6.3.3 Modes of Operation 541
 6.3.4 Reviewing Plans and Specifications 542
 6.3.5 Startup Procedures 544
 6.3.6 Shutdown Procedures 545
 6.3.7 Equipment Inspection and Preventive Maintenance 546

6.4 Submerged Fixed Film 547
 6.4.1 Moving and Fixed Bed Biological Reactor Processes 548
 6.4.2 Integrated Fixed Film Activated Sludge Process 550
 6.4.3 Selecting a Process 551
 6.4.4 Components 551
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.4.1 Media</td>
<td>551</td>
</tr>
<tr>
<td>6.4.4.2 Media Retention Sieve</td>
<td>554</td>
</tr>
<tr>
<td>6.4.4.3 Aeration System</td>
<td>554</td>
</tr>
<tr>
<td>6.4.4.4 Mixers</td>
<td>554</td>
</tr>
<tr>
<td>6.4.5 Process Monitoring and Control</td>
<td>554</td>
</tr>
<tr>
<td>6.4.6 Modes of Operation</td>
<td>561</td>
</tr>
<tr>
<td>6.4.7 Reviewing Plans and Specifications</td>
<td>565</td>
</tr>
<tr>
<td>6.4.8 Startup and Shutdown Procedures</td>
<td>567</td>
</tr>
<tr>
<td>6.4.9 Troubleshooting</td>
<td>567</td>
</tr>
<tr>
<td>6.5 Math Assignment</td>
<td>568</td>
</tr>
<tr>
<td>Chapter Review</td>
<td>569</td>
</tr>
<tr>
<td>Chapter 7</td>
<td>575</td>
</tr>
<tr>
<td>Disinfection</td>
<td>576</td>
</tr>
<tr>
<td>7.1 Destroying Pathogens</td>
<td>576</td>
</tr>
<tr>
<td>in Wastewater</td>
<td>576</td>
</tr>
<tr>
<td>7.2 Disinfection Processes</td>
<td>578</td>
</tr>
<tr>
<td>7.2.1 Chlorination</td>
<td>578</td>
</tr>
<tr>
<td>7.2.1.1 Gas Chlorination</td>
<td>579</td>
</tr>
<tr>
<td>7.2.1.2 Hypochlorination</td>
<td>579</td>
</tr>
<tr>
<td>7.2.2 Ultraviolet Radiation</td>
<td>579</td>
</tr>
<tr>
<td>7.2.3 Ozonation</td>
<td>579</td>
</tr>
<tr>
<td>7.3 Chlorination</td>
<td>579</td>
</tr>
<tr>
<td>7.3.1 Chlorine Safety Program</td>
<td>580</td>
</tr>
<tr>
<td>7.3.1.1 Chlorine Hazards</td>
<td>580</td>
</tr>
<tr>
<td>7.3.1.2 Operator Safety</td>
<td>581</td>
</tr>
<tr>
<td>7.3.1.3 First-Aid Measures</td>
<td>583</td>
</tr>
<tr>
<td>7.3.2 Chlorine Reactions in Wastewater</td>
<td>584</td>
</tr>
<tr>
<td>7.3.2.1 Free Chlorine</td>
<td>584</td>
</tr>
<tr>
<td>7.3.2.2 Hypochlorite</td>
<td>584</td>
</tr>
<tr>
<td>7.3.2.3 Chlorine Dioxide</td>
<td>585</td>
</tr>
<tr>
<td>7.3.3 Impurities in Wastewater</td>
<td>585</td>
</tr>
<tr>
<td>7.3.3.1 Inorganic Reducing Agents</td>
<td>586</td>
</tr>
<tr>
<td>7.3.3.2 Ammonia</td>
<td>587</td>
</tr>
<tr>
<td>7.3.4 Factors Influencing Chlorine Disinfection</td>
<td>589</td>
</tr>
<tr>
<td>7.3.5 Chlorine Requirements</td>
<td>589</td>
</tr>
<tr>
<td>7.3.6 Chlorination Process Calculations</td>
<td>590</td>
</tr>
<tr>
<td>7.4 Chlorination Equipment</td>
<td>593</td>
</tr>
<tr>
<td>7.4.1 Chlorinators</td>
<td>594</td>
</tr>
<tr>
<td>7.4.2 Evaporators</td>
<td>596</td>
</tr>
<tr>
<td>7.4.3 Chlorine Solution Discharge Lines and Diffusers</td>
<td>598</td>
</tr>
<tr>
<td>7.4.4 Reviewing Plans and Specifications</td>
<td>599</td>
</tr>
<tr>
<td>7.4.4.1 Piping, Connections, and Valves</td>
<td>600</td>
</tr>
<tr>
<td>7.4.4.2 Chlorinator Injector Water Supply</td>
<td>601</td>
</tr>
<tr>
<td>7.4.5 Chlorinator Startup Procedures</td>
<td>602</td>
</tr>
<tr>
<td>7.4.5.1 Gas Chlorinators</td>
<td>602</td>
</tr>
<tr>
<td>7.4.5.2 Liquid Chlorinators</td>
<td>603</td>
</tr>
<tr>
<td>7.5 Chlorination Process Control</td>
<td>605</td>
</tr>
<tr>
<td>7.5.1 Measuring Chlorine Residual</td>
<td>606</td>
</tr>
<tr>
<td>7.5.2 Chlorinator Feed Rate and Control</td>
<td>608</td>
</tr>
<tr>
<td>7.6 Normal and Abnormal Chlorination Operation</td>
<td>610</td>
</tr>
<tr>
<td>7.6.1 Container Storage Area</td>
<td>611</td>
</tr>
<tr>
<td>7.6.2 Evaporators</td>
<td>611</td>
</tr>
<tr>
<td>7.6.2.1 Abnormal Conditions</td>
<td>612</td>
</tr>
<tr>
<td>7.6.3 Chlorinators</td>
<td>614</td>
</tr>
<tr>
<td>7.6.3.1 Abnormal Conditions</td>
<td>616</td>
</tr>
<tr>
<td>7.6.4 Operational Strategy</td>
<td>618</td>
</tr>
<tr>
<td>7.6.5 Troubleshooting</td>
<td>620</td>
</tr>
<tr>
<td>7.6.6 Shutdown Procedures</td>
<td>620</td>
</tr>
<tr>
<td>7.7 Chlorine Containers</td>
<td>622</td>
</tr>
<tr>
<td>7.7.1 Cylinders</td>
<td>622</td>
</tr>
<tr>
<td>7.7.2 Ton Tanks</td>
<td>623</td>
</tr>
<tr>
<td>7.7.3 Chlorine Tank Cars</td>
<td>624</td>
</tr>
<tr>
<td>7.7.4 Connecting Containers to Chlorine Systems</td>
<td>625</td>
</tr>
<tr>
<td>7.7.4.1 Connections</td>
<td>625</td>
</tr>
<tr>
<td>7.7.4.2 Valves</td>
<td>626</td>
</tr>
<tr>
<td>7.7.4.3 Ton Tanks</td>
<td>626</td>
</tr>
<tr>
<td>7.7.4.4 Railroad Tank Cars</td>
<td>626</td>
</tr>
<tr>
<td>7.7.5 Chlorine Leaks</td>
<td>628</td>
</tr>
<tr>
<td>7.8 Hypochlorinators</td>
<td>632</td>
</tr>
<tr>
<td>7.8.1 Safety</td>
<td>634</td>
</tr>
<tr>
<td>7.8.2 Feed Rate and Control</td>
<td>634</td>
</tr>
<tr>
<td>7.8.3 Startup Procedures</td>
<td>635</td>
</tr>
<tr>
<td>7.8.4 Normal Operation</td>
<td>635</td>
</tr>
<tr>
<td>7.8.5 Abnormal Operation</td>
<td>639</td>
</tr>
<tr>
<td>7.8.6 Repair and Shutdown</td>
<td>640</td>
</tr>
</tbody>
</table>
7.9 Dechlorination 640
 7.9.1 Sodium Sulfite 641
 7.9.1.1 Storage and Safety 642
 7.9.1.2 Insufficient Dose or Incomplete Removal of Chlorine 643
 7.9.1.3 Overdose 643
 7.9.2 Sulfur Dioxide 643
 7.9.2.1 Safety 644
 7.9.2.2 Hazards 645
 7.9.2.3 Reactions with Wastewater 647
 7.9.2.4 Application Point 648
 7.9.2.5 Supply System 649
 7.9.3 Sulfonation System 649
 7.9.3.1 Sulfonator Controls 650
 7.9.3.2 Determining Residual Sulfur Dioxide 652
 7.9.3.3 Operation 653
 7.9.3.4 Maintenance 659
 7.9.4 Reviewing Plans and Specifications 661
7.10 Ultraviolet Radiation 662
 7.10.1 Safety 665
 7.10.2 Equipment Configuration 665
 7.10.2.1 Lamps and Sleeves 668
 7.10.2.2 Cleaning Equipment 669
 7.10.2.3 Critical Sensors 670
 7.10.3 Normal and Abnormal Operation 672
 7.10.3.1 Equipment Startup/Shutdown Procedures 672
 7.10.3.2 Monitoring Water Flows and Levels 673
 7.10.3.3 Monitoring and Managing UV Dose 673
 7.10.3.4 Monitoring Influent and Effluent Characteristics 675
 7.10.3.5 Cleaning Quartz Sleeves 676
 7.10.3.6 Monitoring Lamp Output Intensity 676
 7.10.3.7 Correcting Performance Issues 677
 7.10.3.8 Recordkeeping 678
 7.10.4 Maintenance 679
 7.10.4.1 Reactor Cleaning 679
 7.10.4.2 Quartz Sleeve Cleaning and Replacement 681
 7.10.4.3 Lamp Maintenance 682
 7.10.4.4 Ballast Maintenance 682
 7.10.4.5 Sensor Maintenance 683
 7.10.5 Reviewing Plans and Specifications 684
 7.11 Ozonation 685
 7.12 Math Assignment 688
 7.13 Additional Resources 688
Chapter Review 689
Chapter 8
Lagoon Systems (Secondary Treatment) 693
 8.1 Why Lagoons Are Used 694
 8.2 Safety 696
 8.3 Lagoon Classifications and Applications 696
 8.4 Treatment Process 701
 8.5 Typical Lagoon Performance 703
 8.6 Starting a Lagoon 704
 8.7 Operation and Maintenance 706
 8.7.1 Observe and Test Lagoon Conditions 706
 8.7.2 Maintain Appropriate Water Elevations 707
 8.7.3 Manage Loading 707
 8.7.4 Recirculation 718
 8.7.5 Headworks and Screening 718
 8.7.6 Scum Control 719
 8.7.7 Odor Control 720
 8.7.8 Weed and Insect Control 721
 8.7.8.1 Emergent Weeds 721
 8.7.8.2 Suspended Vegetation 722
 8.7.8.3 Dike Vegetation 723
 8.7.8.4 Herbicides 723
 8.7.8.5 Insects 724
 8.7.9 Sludge Management 725
 8.7.10 Algae Control 726
 8.7.11 Levee Maintenance 726
 8.7.12 liners 728
 8.7.13 Batch and Controlled Discharge Operations 730
Table of Contents

8.8 Abnormal Operation and Troubleshooting 731

8.8.1 Overloading 731
8.8.2 Winter Conditions 732
8.8.3 Eliminating Algae from Lagoon Effluents 732
8.8.4 Troubleshooting 735

8.9 Sampling and Analysis 738

8.9.1 Sampling Frequency and Location 740
8.9.2 Expected Treatment Efficiencies 742

8.10 Aeration 743

8.10.1 Surface Aerators 743
8.10.2 Submerged Diffusers 745
8.10.3 Operation and Maintenance of Aerated Lagoons 746

8.11 Shutdown Procedures 747

8.12 Reviewing Plans and Specifications 747

8.13 Enhanced Lagoon Designs 753

8.14 Math Assignment 755

8.15 Additional Resources 755

Chapter Review 756

Chapter 9

Laboratory Procedures 759

9.1 Determining Water Quality 760

9.1.1 NPDES Permit Compliance 760
9.1.2 Process Control and Troubleshooting 761

9.2 Laboratory Safety 762

9.2.1 Laboratory Hazards 762
 9.2.1.1 Glassware 763
 9.2.1.2 Hazardous Materials 763
 9.2.1.3 Infectious Materials 764
 9.2.1.4 Radioactivity 765
 9.2.1.5 Other Hazards 765
9.2.2 Preventing Laboratory Accidents 766
 9.2.2.1 General Rules 766

9.2.2.2 Personal Hygiene 766
9.2.2.3 Toxic Fumes 767
9.2.2.4 Electric Shock 768
9.2.2.5 Fire 769
9.2.2.6 Burns 769
9.2.2.7 Cuts 770
9.2.2.8 Using Proper Laboratory Techniques 771

9.3 Chemical Handling 772

9.3.1 Laboratory Units: Metric System 775
9.3.2 Laboratory Glassware and Equipment 778
 9.3.2.1 Reading Volumes 782
 9.3.2.2 Using Pipets 783
9.3.3 Chemical Names and Formulas 785
9.3.4 Chemical Solutions 788
 9.3.4.1 Mass Concentration 788
 9.3.4.2 Molar Concentration 790
 9.3.4.3 Normality 792
 9.3.4.4 Liquid Solutions—Dilution Ratio 794
 9.3.4.5 Mixing 795

9.3.5 Common Laboratory Procedures and Instruments 798
 9.3.5.1 Gravimetric Analysis—Measurements Based on Mass 798
 9.3.5.2 Titrations and Indicators 799
 9.3.5.3 Colorimetric Analysis 802
 9.3.5.4 Light Scattering—Turbidity 805
 9.3.5.5 Microscopy 805
 9.3.5.6 Probe-Based Electronic Instruments 805
 9.3.5.7 Calibrating Instruments—Calibration Curves 807

9.3.6 Data Recording and Recordkeeping 810
9.3.7 Laboratory Quality Control 812

9.4 Sampling 814

9.4.1 Sampling with a Purpose 814
9.4.2 Representative Samples 815
9.4.3 Collecting Samples 817
 9.4.3.1 Grab Samples 817
Table of Contents

9.4.3.2 Composite Samples 817
9.4.3.3 Sampling Devices 821

9.4.4 Handling Samples 825
9.4.4.1 Preservation, Storage, and Transport of Samples 825
9.4.4.2 Chain-of-Custody Procedures 825

9.4.5 Sludge Sampling 827

9.5 Common Laboratory Methods 828

9.5.1 Importance of Standardized Procedures 829
9.5.2 Solids 830
 9.5.2.1 Total Solids 831
 9.5.2.2 Settleable Solids 833
 9.5.2.3 Suspended Solids 835
 9.5.2.4 Total Dissolved Solids 838
 9.5.2.5 Volatile and Fixed Solids 841
 9.5.2.6 Electroconductivity 845
 9.5.2.7 Turbidity 846

9.5.3 Chemical Parameters 848
 9.5.3.1 Acidity and Alkalinity 848
 9.5.3.2 Chloride 854
 9.5.3.3 Chlorine Residual 856
 9.5.3.4 pH (Hydrogen Ion) 862
 9.5.3.5 Hydrogen Sulfide (Dissolved in Water) 865
 9.5.3.6 Metals 867
 9.5.3.7 Nitrogen 867
 9.5.3.8 Ammonia 870
 9.5.3.9 Total Kjeldahl Nitrogen 874
 9.5.3.10 Nitrogen (Organic) 877
 9.5.3.11 Nitrite 877
 9.5.3.12 Nitrate 877
 9.5.3.13 Oil and Grease 879
 9.5.3.14 Oxygen (Dissolved Gas) 880
 9.5.3.15 Oxygen Demand 885
 9.5.3.16 Biochemical Oxygen Demand 886
 9.5.3.17 Chemical Oxygen Demand 890
 9.5.3.18 Phosphorus 896
 9.5.3.19 Ortho-P 896
 9.5.3.20 Total Phosphorus 898
 9.5.3.21 Sulfate 898
 9.5.3.22 Surfactants 899

9.5.4 Biological Parameters 900
 9.5.4.1 Microbial Testing 900
 9.5.4.2 Coliform Bacteria 902

9.5.5 Gases 917
 9.5.5.1 Carbon Dioxide in Anaerobic Digester Gas 918
 9.5.5.2 Hydrogen Sulfide (Atmosphere) 920

9.5.6 Tests for Process Control and Sludge 922
 9.5.6.1 Clarity (Secchi Disk) 922
 9.5.6.2 Sludge Settleability, Sludge Volume Index, and Sludge Density Index 924
 9.5.6.3 Mixed Liquor and Sludge Suspended Solids (Centrifuge Method) 927
 9.5.6.4 Digester Supernatant Solids 929
 9.5.6.5 Digested Sludge Dewatering Characteristics 929
 9.5.6.6 Volatile Acids 932

9.6 Math Assignment 935

Chapter Review 936

Appendix A

Introduction to Basic Math for Operators 943

Introduction 944

Basic Concepts (Sections A.1–A.4) 945

A.1 Numbers and Operations 945

A.1.1 Addition 945
A.1.2 Subtraction 945
A.1.3 Multiplication 946
A.1.4 Division 946

A.2 Order of Operations 946

A.2.1 More on Exponents 950

A.3 Basic Algebra (Solving Equations) 950
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4</td>
<td>Percentages</td>
<td>953</td>
</tr>
<tr>
<td>A.5</td>
<td>Intermediate Concepts (Sections A.5–A.6)</td>
<td>956</td>
</tr>
<tr>
<td></td>
<td>A.5.1 Distance or Length</td>
<td>956</td>
</tr>
<tr>
<td></td>
<td>A.5.2 Area</td>
<td>957</td>
</tr>
<tr>
<td></td>
<td>A.5.2.1 Surface Area of a Rectangle</td>
<td>957</td>
</tr>
<tr>
<td></td>
<td>A.5.2.2 Surface Area of a Triangle</td>
<td>958</td>
</tr>
<tr>
<td></td>
<td>A.5.2.3 Surface Area of a Trapezoid</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>A.5.2.4 Surface Area of a Circle</td>
<td>959</td>
</tr>
<tr>
<td></td>
<td>A.5.2.5 Surface Area of a Cylinder</td>
<td>960</td>
</tr>
<tr>
<td></td>
<td>A.5.2.6 Surface Area of a Cone</td>
<td>961</td>
</tr>
<tr>
<td></td>
<td>A.5.2.7 Surface Area of a Sphere</td>
<td>962</td>
</tr>
<tr>
<td>A.5.3</td>
<td>Volume</td>
<td>962</td>
</tr>
<tr>
<td></td>
<td>A.5.3.1 Cube</td>
<td>963</td>
</tr>
<tr>
<td></td>
<td>A.5.3.2 Rectangular Prism</td>
<td>963</td>
</tr>
<tr>
<td></td>
<td>A.5.3.3 Triangular Prism</td>
<td>964</td>
</tr>
<tr>
<td></td>
<td>A.5.3.4 Cylinder</td>
<td>964</td>
</tr>
<tr>
<td></td>
<td>A.5.3.5 Cone</td>
<td>965</td>
</tr>
<tr>
<td></td>
<td>A.5.3.6 Sphere</td>
<td>965</td>
</tr>
<tr>
<td>A.5.4</td>
<td>Mass and Weight</td>
<td>965</td>
</tr>
<tr>
<td>A.5.5</td>
<td>Density, Specific Weight, and Specific Gravity</td>
<td>966</td>
</tr>
<tr>
<td>A.5.6</td>
<td>Concentration</td>
<td>966</td>
</tr>
<tr>
<td>A.5.7</td>
<td>Velocity and Flow Rate</td>
<td>968</td>
</tr>
<tr>
<td>A.5.8</td>
<td>Force and Pressure</td>
<td>970</td>
</tr>
<tr>
<td>A.5.9</td>
<td>Work, Head, and Power</td>
<td>975</td>
</tr>
<tr>
<td>A.6</td>
<td>Metric System</td>
<td>978</td>
</tr>
<tr>
<td>A.6.1</td>
<td>SI Base Units</td>
<td>978</td>
</tr>
<tr>
<td>A.6.2</td>
<td>Measures of Length</td>
<td>980</td>
</tr>
<tr>
<td>A.6.3</td>
<td>Measures of Capacity or Volume</td>
<td>980</td>
</tr>
<tr>
<td>A.6.4</td>
<td>Measures of Weight</td>
<td>980</td>
</tr>
<tr>
<td>A.6.5</td>
<td>Temperature</td>
<td>981</td>
</tr>
<tr>
<td>A.7</td>
<td>Pumps</td>
<td>982</td>
</tr>
<tr>
<td>A.7.1</td>
<td>Pressure</td>
<td>982</td>
</tr>
<tr>
<td>A.7.2</td>
<td>Work</td>
<td>983</td>
</tr>
<tr>
<td>A.7.3</td>
<td>Power</td>
<td>984</td>
</tr>
<tr>
<td>A.7.4</td>
<td>Horsepower</td>
<td>984</td>
</tr>
<tr>
<td>A.7.5</td>
<td>Head</td>
<td>988</td>
</tr>
<tr>
<td>A.7.6</td>
<td>Pump Characteristics</td>
<td>990</td>
</tr>
<tr>
<td>A.7.7</td>
<td>Evaluation of Pump Performance</td>
<td>992</td>
</tr>
<tr>
<td></td>
<td>A.7.7.1 Capacity</td>
<td>992</td>
</tr>
<tr>
<td></td>
<td>A.7.7.2 Efficiency</td>
<td>993</td>
</tr>
<tr>
<td>A.7.8</td>
<td>Pump Speed–Performance Relationships</td>
<td>996</td>
</tr>
<tr>
<td>A.7.9</td>
<td>Friction or Energy Losses</td>
<td>997</td>
</tr>
<tr>
<td>A.8</td>
<td>Analysis and Presentation of Data</td>
<td>1001</td>
</tr>
<tr>
<td>A.8.1</td>
<td>Causes of Variations in Results</td>
<td>1001</td>
</tr>
<tr>
<td></td>
<td>A.8.1.1 Water or Material Being Examined</td>
<td>1002</td>
</tr>
<tr>
<td></td>
<td>A.8.1.2 Sampling</td>
<td>1002</td>
</tr>
<tr>
<td></td>
<td>A.8.1.3 Testing</td>
<td>1002</td>
</tr>
<tr>
<td>A.8.2</td>
<td>Controlling Variation</td>
<td>1002</td>
</tr>
<tr>
<td></td>
<td>A.8.2.1 Reading Charts</td>
<td>1004</td>
</tr>
<tr>
<td>A.8.3</td>
<td>Describing Data or Results</td>
<td>1004</td>
</tr>
<tr>
<td></td>
<td>A.8.3.1 Graphs and Charts</td>
<td>1005</td>
</tr>
<tr>
<td></td>
<td>A.8.3.2 Numerical Representation of Data</td>
<td>1010</td>
</tr>
<tr>
<td>A.8.4</td>
<td>Moving Averages</td>
<td>1017</td>
</tr>
<tr>
<td>A.8.5</td>
<td>More Applications of Graphs</td>
<td>1019</td>
</tr>
<tr>
<td></td>
<td>A.8.5.1 Volume of Sludge in a Digester</td>
<td>1019</td>
</tr>
<tr>
<td></td>
<td>A.8.5.2 Tracking BOD Loading</td>
<td>1022</td>
</tr>
<tr>
<td>A.8.6</td>
<td>Regression Analysis (Prediction Equations, Trends, and Correlations)</td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td>A.8.6.1 Correlations</td>
<td>1029</td>
</tr>
<tr>
<td>Answer Key</td>
<td>1031</td>
<td></td>
</tr>
<tr>
<td>Glossary</td>
<td>1035</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td>1059</td>
<td></td>
</tr>
</tbody>
</table>
Activated sludge process (ASP)
abnormal operation
design deficiency, 345
environmental changes, 345
equipment malfunction, 344
hydrulics, 342
plant changes, 344
problems and solutions, 346–364
process control, 344–345
water quality, 342–343
aeration system, 272–277
air distribution system, 250
air headers and diffusers, 250–251
ASP variables
biological solids/active biomass, 260–261
F/M ratio, 261
HLR, 259–260
HRT, 260
solids in aeration tank, 260
substrate, 261
volume of reactors, 259
volumetric organic loading, 260
automated control systems
DCS, 291
SCADA system, 291
blower air filters, 250
blowers, 250
complete mix, 305–306
contact stabilization, 314–315
control strategy, 332–333
conventional BOD removal process, 301–303
definition, 239
high-purity oxygen, 316–318
high-rate ASP, 305
influent flow and quality, 270–271
Kraus process, 315–316
laboratory testing, 296–297
low-rate extended aeration, 304–305
maintenance
diffused aeration system, 438–444
influent/effluent flow control
equipment, 436–437
instrument, 447–448
RAS/WAS pumping systems, 446–447
secondary clarifiers, 444–446
surface aerators, 457–458
tank mixers, 457
MCRT, 263
membrane bioreactor process, 318–320
microorganisms
bacteria, 383–385
desirable and undesirable
microorganisms, 401–403
microscopic examination, 394–400
microscopic results, 403
process change, 405–407
protozoa, 385–388
rotifers, 388
viruses, fungi, and algae, 388
microscopic evaluation, 294
mixed liquor, 272
monitoring tools, 285–290
operational strategy, 323–326
oxidation ditches, 312–314
package plants, 320–322
plug flow ASPs, 307
process adjustment and operator response, 333–340
process configuration, 242
process data analysis and review, 329–331
process inspection, 294–296
BNR systems, 303–304
complete mix ASPs, 305–306
conventional BOD removal processes, 301–303
high rate ASPs, 305
low-rate extended aeration ASPs, 304–305
oxidation ditches, 312–314
plug flow ASPs, 306
SBR process, 309–312
step-feed and conventional operations, 307–309
tapered aeration ASPs, 309
process performance monitoring, 327–329
pump rooms, 248–249
recordkeeping, 298–300
return activated sludge, 278–279
review of drawings
architecture and structure, 451
civil drawing plans, 450
electrical, instrumentation, and control, 452–453
general drawing section, 450
process and mechanical drawing, 451–452
review of specifications
architecture and structure, 455
civil, 454
Activated sludge process (ASP) (continued)

- Electrical, instrumentation, and control, 456
- General reviews, 454
- Process and mechanical, 455–456
- Routine operator tasks, 326–327
- Safety aspects
 - Equipment hazards, 246–247
 - Safety guidelines, 246
 - Typical hazards, 246
- Secondary clarifiers, 243–245, 277
- Selectors, 316
- Sequencing batch reactors, 309–312
- Settleometer test, 292–293
- Sequencing batch reactors, 309–312
- Selectors, 316
- Secondary clarifiers, 243–245, 277
- Routine operator tasks, 326–327
- Safety aspects
 - Equipment hazards, 246–247
 - Safety guidelines, 246
 - Typical hazards, 246
- Sequence batch reactors, 309–312
- Selectors, 316
- Secondary clarifiers, 243–245, 277
- Routine operator tasks, 326–327
- Safety aspects
 - Equipment hazards, 246–247
 - Safety guidelines, 246
 - Typical hazards, 246

Addition, 945

Advanced Integrated Wastewater Pond Systems® (AIWPS®), 753

Aerated grit chambers, 172–174

Aerated lagoons, operation and maintenance of, 746–747

Aeration system, 554–555

Centrifugal blowers, 273

Diffused-air aeration system, 273

Endogenous respiration, 272

High-purity oxygen systems, 275

High-speed turbo blowers, 274

Horizontal axis surface aerators, 276

Mechanical aeration systems, 275

Nonporous diffusers, 274, 276

Operation and maintenance of aerated lagoons, 746–747

Piping network system, 274

Porous diffusers, 274

Positive displacement blowers, 273

Submerged diffusers, 745–746

Surface aerators, 743–745

Vertical axis surface aerators, 276

Aeration tanks, 25, 136, 242–243

Abnormal operation, ASP

Aeration tank foaming, 350–351

Brown foam, 352–354

Diffused aeration system, 347–349

Mechanical aeration system, 349–350

Stiff white foam, 351–352

Toxicity to organisms, 347

Very dark or black foam, 354–355

Foaming, 350–351

Aerobic bacteria, 6, 25, 467

Aerobic lagoons, 35, 698

Aerobic reactor, 240

Air diffusers, 374–376, 433–434

Air distribution system, 373–374, 433

Air filters, 373, 417–418

Air gap, 603

Air headers, 374, 418, 433–434

Air padding, 625

Algae, 7, 694

Algae control, 726

Algae elimination from lagoon effluents, 732–735

Algal blooms, 704

Algae, 701, 848–854

Alkalinity lab test, 810, 811

Air diffusers, 374–376, 433–434

Air distribution system, 373–374, 433

Air filters, 373, 417–418

Air gap, 603

Air headers, 374, 418, 433–434

Air padding, 625

Algae, 7, 694

Algae control, 726

Algae elimination from lagoon effluents, 732–735

Algal blooms, 704

Algebra, 950–953

Aliquots, 817

Alkalinity, 701, 848–854

Alkalinity lab test, 810, 811

Air diffusers, 374–376, 433–434

Air distribution system, 373–374, 433

Air filters, 373, 417–418

Air gap, 603

Air headers, 374, 418, 433–434

Air padding, 625

Algae, 7, 694

Algae control, 726

Algae elimination from lagoon effluents, 732–735

Algal blooms, 704

Algebra, 950–953

Aliquots, 817

Alkalinity, 701, 848–854

Alkalinity lab test, 810, 811

Aluminum sulfate, 121

Ammonia, 587–588, 868

Amperometric analyzer recorder, 606

Anaerobic bacteria, 6

Anaerobic condition, 278

Anaerobic digester gas, 918–920

Anaerobic lagoons, 698

Anaerobic selector, 562

Analytical balances, 782

Anoxic process, 303

Ashing, 361

ASP. See Activated sludge process (ASP)

Asset management program, 43

Autoclaves, 782

Automated control systems, 291

Automated sampling devices, 821–824

Automatic equipment hazards, 246

Autotrophs, 547

Back-spray orifices, 476

Bacteria, 760

Baking soda, 107

Barley straw, 734–735

Bar screens and racks

debris caught on, 154

operation of, 155

safety around, 156–157

Bases

calcium hydroxide and calcium oxide, 111

hypochlorite compounds, 112–113

sodium carbonate, 113

sodium hydroxide, 111–113

Beakers, 778

Biochemical oxygen demand (BOD), 9, 24, 137, 194, 223, 238, 466, 886–890

Biofilm thickness, 560

Biofilters/biotowers. See Trickling filters

Bioflocculation, 704

Biolac® process, 753

Biological hazards, 247

Biological nutrient removal (BNR) systems, 303–304

Biological treatment systems, 238

Biomass, 239

Biosolids, 2, 11

Blanks, 807, 812

Blower air filters, 250

Blower operation, 369, 371–373

Blowers and compressors, 419–421

BOD. See Biochemical oxygen demand (BOD)

BOD bottle, 780

Breakpoint chlorination, 586

Brown foam, 352–354

Buffering capacity, 848

Bulk ing, 211, 284

Bunsen burners, 782

Burets, 779

Calcium carbonate, 123

Calcium hydroxide, 111

Calcium oxide, 111

Calibrating instruments—calibration curves, 807
Carbon dioxide (CO₂), 117, 205
Carbon dioxide extinguishers, 99
Carbon monoxide (CO), 119, 206
Carbon-oxidizing MBBRs, 557
Cathodic protection, 598
Central tendency, 1010–1014
Centrifugal blowers, 273, 433
Chain-driven scrapers, 171, 172
Chart recorder, 148
Chemical handling acids
acetic acid (glacial), 107–108
HCl, 108, 109
HNO₃, 108–110
H₂SO₄, 110
hydrochloric acid, 105
bases
calcium hydroxide and calcium oxide, 111
hypochlorite compounds, 112–113
sodium carbonate, 113
sodium hydroxide, 111–113
chemical storage drains, 124
chlorine, 101
gases and vapors
carbon monoxide, 119
chlorine, 115–117
CO₂, 117
ethane, 120
gasoline vapor, 119
H₂S, 120
hydrogen, 119
methane, 119–120
oxygen, 118
sulfur dioxide, 118
hazard communication program, 104, 106
labeling on sulfuric acid container, 104, 105
powders
activated carbon, 123–124
organic coagulant aids, 122
salts
aluminum sulfate, 121
ferric chloride, 121
ferric sulfate, 121–122
ferrous sulfate, 122
sodium aluminate, 122
safety data sheet, 102–104
toxic, 101
training program for, 102
Chemical hazards, 247
Chemical oxygen demand (COD), 9, 223, 257, 504, 890–895
Chemical solutions
dilution ratio, 794–795
mass concentration, 788–790
mixing, 795–797
molar concentration, 790–792
normality, 792–794
Chemical storage drains, 124
Chemical titration, 800
Chloride, 854–856
Chlorination, 336, 578–579
chlorination process calculations, 590–593
chlorine reactions in wastewater, 584–585
chlorine requirements, 589–590
chlorine safety program
chlorine hazards, 580–581
first-aid measures, 583
operator safety, 581–583
description, 579
factors influencing chlorine disinfection, 589
impurities in wastewater, 585
ammonia, 587–588
inorganic reducing agents, 586–587
normal and abnormal operation, 610
chlorinators, 614–618
container storage area, 611
evaporators, 611–613
operational strategy, 618–620
shutdown procedures, 620–622
troubleshooting, 620
chlorination equipment, 593
chlorinators, 594–596
chlorinator startup procedures
gas chlorinators, 602–603
liquid chlorinators, 604–605
chlorine solution discharge lines and diffusers, 598–599
evaporators, 596–598
reviewing plans and specifications
chlorinator injector water supply, 601–602
operation and maintenance, 599–600
piping, connections, and valves, 600–601
chlorination process control, 605–606
chlorinator feed rate and control, 608–610
chlorine residual measurement, 606–608
Chlorinators
gas, 602–603
liquid, 604–605
normal and abnormal operation, 614–618
vacuum gas feed, 594
Chlorine (Cl₂), 18, 115–117, 205
Chlorine contact basin, 29
Chlorine containers
chlorine leaks, 628–632
carbon tank cars, 624–625
connecting containers to chlorine systems, 625–626
railroad tank cars, 626–628
ton tanks, 626
valves, 626
cylinders, 622–623
ton tanks, 623–624
Chlorine demand, 297, 505, 584
Chlorine dioxide, 585
Chlorine gas, 28
Chlorine gas piping, 600
Chlorine leaks, 628–632
Chlorine reactions in wastewater, 584–585
Chlorine requirements, 589–590, 608
Chlorine residual, 586
amperometric titration, 860–861
DPD method, 859–860
electrode method, 860
forms of, 857
interferences and method choices, 859
iodometric methods, 860
parameter description, 856–857
units, 858–859
Chlorine safety program
chlorine hazards, 580–581
first-aid measures, 583
operator safety, 581–583
Chlorine tank cars, 624–625
Chlororganic compounds, 586
Circular clarifiers, 22, 23, 194–197, 207–208
Clamps, 781
Clarification, 253
Clarifiers, 22, 136
definition, 192
plan diagram of, 192, 194
primary clarifier, 22, 24, 192, 208, 214–221
sedimentation and flotation
detention time, 199–200
examples, 202–204
rectangular and circular clarifiers, 194–196
short-circuiting, 198–199
surface loading rate, 200
temperature, 198
weir loading rate, 200
secondary clarifiers. See Secondary clarifiers
treatment processes flow diagram, 192, 193
Clarity, 505, 922–923
Clay liner, 729
Cleaning, 75–76
Cleaning pipets, 785
Clean Water Act (CWA), 10–12, 24, 760
Cloudy secondary effluent, 362–364
Clumping/rising sludge, 360–361
Coagulation, 358
COD. See Chemical oxygen demand (COD)
Coliform, 590
elementary substrate tests, 906
fecal and non-fecal groups, 902
Coliform bacteria, 902
Coliform counts, 506
Collection system, 5
Collection system safety
cleaning tools and equipment, 129
evacuation, 126–129
manholes, 125–126
pumping stations, 129–130
traffic hazards, 124–125
Colorimetric measurement, 802
Combined available chlorine, 606
Combined sewer, 11
Combined Sewer Overflows (CSOs), 11
Comminutors, 161, 163, 164
Complete mix activated sludge process, 305–306
Composite samples, 224, 501, 738, 814, 817–820
Computer-based instruments, 148
Computer maintenance management system (CMMS), 43, 300
Concentration, 966–967
Concrete containment structure, 479
Confined spaces, 78–82
Confirmed test, 903, 906
Constituent, 788
Construction wetlands, 734
Contact stabilization, 314–315
Contagious diseases, 6–7
Contact stabilization, 314–315
Complete mix activated sludge process, 305–306
Controller, 150
Control panels, 95
Correlations, 1029–1030
Crane operation, 77
Cross-flow media, 474–475
Cryptosporidiosis, 6–7
Cyclone grit separators, 174–177
Cylindrical, 174–177
Cylinder-mounted gas chlorinator, 596
Cylinders, 622–623

Data recording, 810–811
Decant water, 228
Decolorization, 577, 640–641
reviewing plans and specifications, 661–662
sodium sulfate
DPD method, 642
flow through a tablet feeder, 641
insufficient dose or incomplete removal of chlorine, 643
overdose, 643
storage and safety, 642–643
tablet dechlorination unit, 641
sulfonation systems, 649–650
maintenance, 659–661
operation, 653–659
residual sulfur dioxide, 652–653
sulfonator controls, 650–652
sulfur dioxide, 643–644
application point, 648–649
hazards, 645–647
reactions with wastewater, 647–648
safety, 644–645
supply system, 649
Defensive driving, 86
Denitrification, 31, 239, 868
density, 192, 966
design deficiency, 345
Destroying pathogens in wastewater, 576–577
Detention time, 199–200, 708
Detritus, 177
Dewatering, 37, 39
dew point, 604
diammonium phosphate, 896
differential-producing flow measuring device, 143, 146
diffused aeration system, 347–349, 438–444
diffused-air aeration system, 273
diffusers, 172, 418–419
digested sludge dewatering, 929–931
digesters, 136
digestion, 38–40
dike vegetation, 723
direct potable reuse, 6–7
disease transmission, 6–7
disinfection, 28–30
chlorination, 578–579
chlorination process calculations, 590–593
chlorine reactions in wastewater, 584–585
chlorine requirements, 589–590
chlorine safety program, 580–583
factors influencing chlorine disinfection, 589
impurities in wastewater, 585–588
chlorination equipment, 593
chlorinators, 594–596
chlorinator startup procedures, 602–605
chlorine solution discharge lines and diffusers, 598–599
evaporators, 590–598
reviewing plans and specifications, 599–602
chlorination process control, 605–606
chlorinator feed rate and control, 608–610
chlorine residual measurement, 606–608
chlorine containers
chlorine leaks, 628–632
chlorine tank cars, 624–625
connecting containers to chlorine systems, 625–628
cylinders, 622–623
ton tanks, 623–624
dehlorination, 640–641
reviewing plans and specifications, 661–662
sodium sulfate, 641–643
sulfonation systems, 649–661
sulfur dioxide, 643–649
destroying pathogens in wastewater, 576–577
hypochloritators, 632–634
abnormal operation, 639–640
feed rate and control, 634–635
normal operation, 635–639
repair and shutdown, 640
safety, 634
startup procedures, 635
normal and abnormal chlorination operation, 610
chlorinators, 614–618
container storage area, 611
evaporators, 611–613
operational strategy, 618–620
shutdown procedures, 620–622
troubleshooting, 620
ozonation, 579, 685–687
ultraviolet radiation, 579, 662–665
equipment configuration, 665–671
maintenance, 679–684
normal and abnormal operation, 672–679
reviewing plans and specifications, 684–685
safety, 665
Disinfection process, 7
Dispersion, 1014–1017
Dissolved air flotation (DAF), 32
Dissolved air flotation thickeners (DAFTs), 211
Dissolved oxygen (DO), 238, 263,
504–505
optical probes, 885
parameter description, 880, 882–883
Polarographic probe method, 884–885
Winkler method, 885
Dissolved solids, 8
Distributed control system (DCS), 291

D
Daily plant monitoring, 502–506
Daltons, 34
Dangerous air contamination, 79
Data analysis and presentation
causes of variations in results, 1001–1002
controlling variation, 1002–1004
graphs and charts, 1005–1010
numerical representation of data, 1010–1017
Data recording, 810–811
Distribution system, trickling filters, 474
containment structure, 479–481
filter pump station, 483
fixed nozzle, 476
hydraulically propelled rotary
distributor, 477
motorized column assembly, 477–478
motorized rotary distributor, 477–479
rotary-type, 476
secondary clarifier, 483–485
solids processing equipment, 485
speed-retarder orifices, 476
underdrain system, 481–482
Division, 946
Domestic contribution, 5
DO meters, 287
Dosing rate, 492–495
Dot diagrams and stem-and-leaf plots, 1008
DPD method. See N,N-diethyl-p-
phenylenediamine (DPD) method
Dry chemical extinguishers, 100
Dry weight, media, 470
Duckweed systems, 733–734
Dust, 123

E
Ear protection devices, 69
Eductor, 627
Effluent, 3
Electrical equipment hazards, 246–247
Electrical equipment safety
avoiding electric shock, 90–92
control panels, 95
current and voltage, 89–90
electric motors, 93–94
electric starters, 93
emergency procedures, 92
instrumentation, 94–95
lockout/tagout procedure, 95–97
safe practices, 89
transformers, 92–93
Electrical fires, 123
Electrical power, 42
Electrical tools, 82, 84
Electric motors, 93–94
Electric shock, 90–92
Electric starters, 93
Electroconductivity, 845–846
Electroconductivity instrument, 805, 806
Electromagnetic flowmeter, 286
Element, 785
Elutriation, 929
Emergency preparedness and response,
72–73
Emergency storage basins, 137, 183–184,
186
Emergency switch, 411
Emergent weeds, 721–722
Endogenous respiration, 272, 505
Endpoint, 799
Environmental changes, 345
Enzymes, 586
Equipment malfunction, 344
Escherichia coli, 910–911
Ethane, 120
Eutrophication, 896
Evaporators, 596–598, 611–613
Explosive atmosphere monitoring, 118,
119
Exponents, 950
Exposures, 58
External reference, 812
Eye protection, 65–66
Facility maintenance safety
cleaning, 75–76
confined spaces, 78–82
crane operation, 77
explosive gas mixtures, 77–78
painting, 76
power tools, 82–84
safety valves, 85
welding, 84–85
Faculative bacteria, 467, 902
Faculative lagoons, 36, 699
Fecal coliform, 902, 909–910
Feed, 177
Ferrous sulfate, 122
Fiberglass containment structure,
479–480
Filamentous organisms, 243
Filter flasks, 778
Filter pump station, 483
Filtration processes, 32
Filter flasks, 780
Filter classification, 506–511
Facilities maintenance safety
cleaning, 75–76
confined spaces, 78–82
crane operation, 77
explosive gas mixtures, 77–78
painting, 76
power tools, 82–84
safety valves, 85
welding, 84–85
Faculative bacteria, 467, 902
Faculative lagoons, 36, 699
Fecal coliform, 902, 909–910
Feed, 177
Ferrous sulfate, 122
Fiberglass containment structure,
479–480
Filamentous organisms, 243
Filter flasks, 778
Filter pump station, 483
Filtration processes, 32
Fire extinguisher
classifications, 98–99
operation and maintenance, 99–100
Fire hoses, 100
Fire prevention and protection
fire exits, 100–101
fire extinguisher
classifications, 98–99
operation and maintenance, 99–100
fire hoses, 100
plan, 97–98
storage of flammables, 100
Fire Protection in Wastewater Treatment
and Collection Facilities, 78
First-aid method, 123
First biological treatment, 466
Five-day biochemical oxygen demand
(5-day BOD), 504
Fixed bed biological reactor (FBBR),
548–549
Fixed film media, 754
Fixed film processes, 26–27
first biological treatment, 466
rotating biological contactors, 529–530
components, 530–537
equipment inspection and preventive
maintenance, 546–547
modes of operation, 541–542
process monitoring and control,
537–541
reviewing plans and specifications,
542–544
shutdown procedures, 545
startup procedures, 544–545
submerged fixed film, 547–548
components, 551–560
integrated fixed film activated sludge
process, 550–551
modes of operation, 561–565
moving and fixed bed biological
reactor processes, 548–549
process selection, 551
reviewing plans and specifications,
565–567
startup and shutdown procedures, 567
troubleshooting, 567–568
trickling filters, 460–468
construction, startup, and shutdown,
515–518
distribution system, 474, 476–485
filter classification, 506–511
media characteristics, 470–471
modes of operation, 511–513
operation and maintenance, 518–521
plastic media, 469, 472–475
process monitoring and control,
486–506
reviewing plans and specifications,
513–514
rock media, 469, 471–472
safety, 485–486
troubleshooting, 521–528
Fixed media, 552–553
Fixed nozzle, 476
Fixed solids, 841–845
Flame polished, 771
Flasks, 778
Flexible membrane liners (FML), 729
Flights, 171, 172, 209
Floatable solids, 9–10
Floc, 243
Floculate, 239
Floculation, 32, 239
Floc-forming bacteria, 243
Flotation, 192
Flow control gates, valves, and weirs,
415–416
Flow equalization
disadvantage of, 227
evaluation of, 231
in-line equalization, 227
operating equalization tanks, 230
pumps and flow controls, 229–230
side-line equalization, 227
tanks
construction, 229
solids handling, 229
Flow equalization (continued)
- volume, 228–229
- calibration and cross-checking meter performance, 152–153
- controllers, 150
- conversion and readout instruments controllers, 150
- mechanical meters, 147
- receivers, 148–149
- transmitters, 147
- determining flow rate, 140
- example, 141–142
- location of measuring devices, 146–147
- maintenance, 151–152
- metering device
 - constant differential, 142–144
 - differential producers, 143, 146
 - head area, 142–145
 - velocity meters, 142–143, 147
 - troubleshooting meters, 153
- Flow measuring devices, 20–22
- Flowmeters, 147
- Flume-type flowmeter, 286
- F/M ratio, 261, 541
- Foam extinguishers, 99
- Food/microorganism (F/M) ratio, 243, 541
- Foot protection, 65–66
- Force and pressure, 970–975
- Forklifts, 87
- Free available chlorine, 586
- Free chlorine, 584
- Free-floating media, 553
- Free oxygen, 701
- Fueling vehicles, 87
- Fume hood, 767, 768
- Gas chlorination, 579
- Gas chlorinators, 602–603
- Gas formers, 38
- Gasification, 210
- Gasoline, 206
- Gasoline vapor, 119
- Gates and valves, 379–381
- Gauges and sensors, 290
- Giardiasis, 6–7
- Glassware and equipment
 - analytical balances, 782
 - autoclaves, 782
 - beakers, 778
 - BOD bottle, 780
 - bottles, 779
 - bunsen burners, 782
 - burets, 779
 - filter flasks, 780
 - flasks, 778
 - graduated cylinders, 779
 - magnetic stirrers, 781
- membrane filter holder, 781
- membrane filtration apparatus, 781
- petri (culture) dish, 781
- pipets, 779
- reading volumes, 782, 783
- test tubes, 778
- tongs and clamps, 781
- using pipets, 783–785
- volumetric flasks, 780
- volumetric pipet, 780
- Grab samples, 501, 739, 817
- Graduated cylinders, 286
- Graduated (Mohr) pipet, 783, 784
- Graphs
 - tracking BOD loading, 1022–1024
 - volume of sludge in a digester, 1019–1021
- Gravimetric analysis, 798
- Gravity collection system, 14
- Grit, 5
- Grit channels, 18–20, 165–172
- Grit channel safety, 181–182
- Grit removal, 136–137, 186–187
- aerated grit chambers, 172–174
- cyclone grit separators, 174–177
- disposal of grit, 180
- grit channels, 165–172
- grit channel safety, 181–182
- grit received quantities, 179–180
- grit washing, 177–179
- operation and maintenance, 180–181
- vortex-type grit chambers, 174
- Grit washing, 177–179
- Ground-fault circuit interrupter (GFCI), 84
- Heterotrophs, 547
- High-performance aerated pond systems (HPAPS), 753
- High-purity oxygen activated sludge process, 316–318
- High-purity oxygen systems, 275
- High-rate activated sludge process, 305
- High-rate filters, 510
- High-rate media, 470
- High-resolution redox (HRR) chlorine controller, 608
- High-speed turbo blowers, 274
- Histograms, 1005–1006
- Horizontal axis surface aerators, 276
- Human machine interface (HMI), 410, 412
- Hydraulically propelled rotary distributor, 412
- Hydraulic jump, 598
- Hydraulic loading rate, 490–492, 708
- Hydraulic retention time (HRT), 555
- Hydraulics, 342
- Hydrochloric acid, 105, 108
- Hydrogen sulfide, 205, 865–867
- Hydrogen sulfide gas, 120
- Hydrogen sulfide gas detectors, 114
- Hydrograph controlled-release lagoon (HCRL), 700, 730
- Hydroxides, 111
- Hypochlorination, 578, 579
- Hypochlorinators, 579, 632–634
- abnormal operation, 639–640
- feed rate and control, 634–635
- normal operation, 635–639
- repair and shutdown, 640
- safety, 634
- startup procedures, 635
- Hypochlorite, 579, 584–585
- Hypochlorite compounds, 112–113
- Icing, 526
- Imhoff cone, 833
- Immediately dangerous to life or health (IDLH), 599
- Immobilized rotating distributor, 526–527
- Impurities in wastewater, 585
- ammonia, 587–588
- inorganic reducing agents, 586–587
- In-channel solids grinders, 161, 162
- Indicating meters, 148
- Indicator, 799
- Indicator lights, 411
- Indirect potable reuse, 3
- Indole, 41
- Infiltration, 14
- Infiltration/inflow (I/I), 256
- Inflow, 14
- Influents, 12, 136
- Influential/effluent flow control equipment, 436–437
Inorganic chemicals, 788
Inorganic reducing agents, 586–587
Inorganic solids, 9
Inorganic wastes, 5, 136
Insects, 724–725
In-service solids grinders, 161, 162
Instrumentation, 94–95
Instrumentation and control (I/C) system, 409–414
Instrumentation control, 42
Integrated fixed film activated sludge process, 550–551
Intermediate-rate filters, 509–510
Ionizable hydrogen, 793
Ions, 786
Ion-selective electrode method, 877
J
Job safety analysis (JSA), 770
K
Kraus process, 315–316
L
Laboratory control sample (LCS), 812
Laboratory control sample duplicate (LCSD), 813
Laboratory procedures
biological parameters
coliform bacteria, 902
enzyme substrate tests for coliform, 906
Escherichia coli, 910–911
fecal coliform, 909–910
membrane filtration technique, 906–909
microbial testing, 900–902
multiple tube fermentation for total coliform, 903–906, 911–917
chemical parameters
acidity and alkalinity, 848–854
ammonia, 870–874
biochemical oxygen demand (BOD), 886–890
chemical oxygen demand (COD), 890–895
chloride, 854–856
chlorine residual, 856–861
hydrogen sulfide (dissolved in water), 865–867
metals, 867
nitrate, 877–878
nitrile, 877
nitrogen (organic), 877
nitrogen compounds, 867–870
oil and grease, 879–881
ortho-P, 896–898
oxygen (dissolved gas), 880–885
oxygen demand, 885–886
pH (hydrogen ion), 862–865
phosphorus, 896
sulfate, 898–899
surfactants, 899–900
TKN, 874–877
total phosphorus, 898
equipment and techniques
calibration curve exercise, 807–810
colorimetric analysis, 802–805
data recording and recordkeeping, 810–811
glassware and equipment, 778–785
chemical solutions (see Chemical solutions)
colormetric analysis, 802–805
data recording and recordkeeping, 810–811
glassware and equipment, 778–785
gravimetric analysis, 798
light scattering, 805, 806
metric system, 775–777
microscopy, 805
probe-based electronic instruments, 805–807
quality control, 812–813
titrations and indicators, 799–802
turbidity, 805, 806
gases
carbon dioxide in anaerobic digester gas, 918–920
digester supernatant solids, 929
mixed liquor and sludge suspended solids, 927–929
sludge settleability, 922–923
volatile acids, 932–935
sampling
collecting samples, 817–820
deVICES, 821–824
elements of, 814
goals and procedures, 814–815
handling samples, 825–827
representative samples, 815–817
sludge, 827–828
solids
classifications of, 830, 831
electroconductivity, 845–846
settleable solids, 833–835
suspended solids, 835–838
total solids, 831–833
turbidity, 846–847
volatile and fixed solids, 841–845
standardized procedures, 829–830
water quality determination
NPDES permit compliance, 760
process control and troubleshooting, 761
Laboratory safety
chemical handling
mixing chemicals, 772, 773
moving chemicals, 774
storage, 773–774
waste disposal, 774
laboratory hazards
corrosive chemicals, 763–764
electrical systems, 765
explosive or flammable chemicals, 764
glassware, 763
infectious materials, 764–765
ovens and open flames, 765
radioactivity, 765
toxic materials (poisons), 764
preventing laboratory accidents
burns, 769–770
cuts, 770–771
electric shock, 768–769
faulty technique, 771
general rules, 766
labeling, 772
mercury, 771
personal hygiene, 766–767
toxic fumes, 767–768
Lagoon systems, 35–36
abnormal operation and troubleshooting
algae elimination from lagoon effluents, 732–735
overloading, 731–732
troubleshooting, 735–738
winter conditions, 732
aeration
operation and maintenance of aerated lagoons, 746–747
submerged diffusers, 745–746
surface aerators, 743–745
classifications and applications, 696–700
enhanced lagoon designs, 753–754
operation and maintenance
algae control, 726
appropriate water elevations, 707
batch and controlled discharge operations, 730–731
headworks and screening, 718–719
levee maintenance, 726–728
liners, 728–730
loading management, 707–717
observe and test lagoon conditions, 706–707
odor control, 720–721
recirculation, 718
scum control, 719–720
sludge management, 725–726
weed and insect control, 721–725
Lagoon systems (continued)
- reviewing plans and specifications, 747–752
- safety, 696
- sampling and analysis, 738–740
- expected treatment efficiencies, 742
- sampling frequency and location, 740–741
- shutdown procedures, 747
- starting, 704–705
- treatment process, 701–703
- typical lagoon performance, 703–704
- uses, 694–695
- Lagoon system with postnitrification
 - MBBR, 562, 563
- Land discharge, 37
- Lateral surface area, 960
- Launder, 200
- Lemna Duckweed System, 733–734, 754
- Levee maintenance, 726–728
- Light scattering, 805, 806
- Limit switch, 157
- Lineal, 200
- Liners, 728–730
- Liquid chlorinators, 604–605
- Liquid chlorine evaporator, 596–597
- Liquid chlorine piping, 600–601
- Local control panel, 410
- Local-off-remote (LOR) switch, 410
- Lockout/tagout procedure, 95–97
- Long-term shutdown and startup procedures, 426–429
- Lower explosive limit (LEL), 77, 78
- Low-pressure collection systems, 15
- Low-pressure fans, 479–480
- Low-rate/extended aeration, 304–305
- Low-rate trickling filters, 508–509

M

- Macro fauna, 525–526
- Magnetic stirrers, 781
- Manual grab samplers, 822–823
- Mass and weight, 965
- Mass concentration, 788–790
- Matrix spike (MS), 812–813
- Matrix spike duplicate (MSD), 813
- MBBR roughing reactor, 562, 563
- Mean (X), 231
- Mean cell residence time (MCRT), 262
- Mechanical aeration systems, 275, 349–350
- Mechanical cleaning equipment, 157, 158
- Mechanical meters, 147
- Media, 26, 466
- Median, 704, 1012
- Media retention sieve, 554–555
- Membrane bioreactor (MBBR), 19, 318–320
- Membrane filter holder, 781
- Membrane filter (MF) method, 902
- Membrane filtration, 33
- Membrane filtration apparatus, 781
- Membrane filtration processes
 - microfiltration, 33
 - nanofiltration, 34
 - reverse osmosis (RO), 34
 - total dissolved solids removal, 35
 - ultrafiltration, 33–34
- Meniscus, 782, 783, 1003
- Mercaptans, 41
- Mercuric nitrate method, 855
- Methane, 206
- Metric system
 - measure of volume capacity, 980
 - measures of length, 980
 - measures of weight, 980–981
 - SI base units, 978–979
 - temperature, 981–982
- Microbial testing, 900–902
- Microfiltration (MF) membranes, 33
- Microns (µm), 383
- Microorganisms, activated sludge process
 - bacteria, 383–386
 - desirable and undesirable
 - microorganisms, 402–403
- Microorganisms, defined, 238
- Microscopy, 805
- Microsoft Excel, 807, 811
- Milligrams per liter (mg/L), 6, 788
- Million liters per day (MLD), 147
- Million liters per day (MLD), 147
- Million gallons per day (MGD), 147
- Mixed liquor, 548
- Mixed liquor suspended solids (MLSS), 243
- Mixed liquor volatile suspended solids (MLVSS), 243
- Molar concentration, 790–792
- Mole, 790
- Molecular weight, 790
- Molecular weight cutoff (MWCO), 34
- Molecules, 198
- Most probable number (MPN), 590, 902
- Motor control center, 410
- Motorized column assembly, 477–478
- Motorized rotary distributor, 477–479
- Moving air hazards, 247
- Moving averages, 1017–1019
- Moving bed biological reactor (MBBR), 548–549
- Muff-type hearing protection, 69
- Multiple tube coliform test, 903–906
- Multiple tube fermentation, 903–906, 911–917
- Multiplication, 946
- Municipal Separate Storm Sewer Systems (MS4s), 11

N

- Nanofiltration membrane, 34
- National Fire Protection Association
 - Standard 820 (NFPA 820), 78
- National Pollutant Discharge Elimination System permit
 - (NPDES permit), 10–12, 21, 239, 590, 760, 902
- National Pretreatment Program, 11
- Nitrate, 868, 877–878
- Nitric acid, 108–110
- Nitrification, 239, 867
- Nitrifying trickling filters, 510–511
- Nitrite, 868, 877
- Nitrogen (organic), 877
- Nitrogen compounds, 867–870
- Nitrogenous compounds, 586
- N,N-diethyl-p-phenylenediamine (DPD) method, 642, 859–860
- Noise exposure, 67–69
- Noise hazards, 246
- Noise reduction rating (NRR), 69, 70
- Non-fecal coliform, 902
- Nonporous diffusers, 274, 276
- Normality (N), 792
- NPDES permit. See National Pollutant Discharge Elimination System permit (NPDES permit)
- Nuclear Regulatory Commission (NRC) regulations, 74, 75
- Numbers and operations
 - addition, 945
 - division, 946
 - multiplication, 946
 - subtraction, 945–946
- Nutrients, 2, 505

O

- Occupational Health and Safety Administration (OSHA), 56
- confined space, 80
- noise exposure limits, 68
- Occupational Safety and Health Act (OSH Act of 1970), 762
index 1067

occupational safety and health
administration (OSHA), 44, 206, 578
Odor, 521, 523
Odor control, 40–41
olfactory fatigue, 114, 205
On-the-job training (OJT), 71
operations logbook, 299
operator safety
noise exposure, 67–69
personal protective equipment
eye protection, 65–66
foot protection, 65–66
hand protection, 66–67
head protection, 66–67
respiratory protection, 63–64
Order of operations, 946–949
organic compounds, 760
organic loading rate, 487–489
organic solids, 9
organic wastes, 5, 136
organisms, 764
Ortho-P, 896–898
Overloading, 731–732
Overturn, 725
oxidation, 240
oxidation ditches, 312–314
oxidation lagoons, 696
oxidation-reduction potential (ORP), 285, 288, 289, 607
oxidizing agent, 584
oxygen, 118
oxygen deficiency, 118
oxygen-deficient atmosphere, 79
oxygen depletion, 5–6
oxygen enrichment, 118
oxygen supply, 498–501
oxygen transfer efficiency (OTE), 560
oxygen uptake rate (OUR), 262–263
ozonation, 579, 685–687
pH measure, 505
pH meters, 288
phosphorus, 896
photosynthesis, 35, 701
pinpoint floc, 361–362
pipet bulbs, 784, 785
pipet filler, 784, 785
pipets, 779
pipework, 79
pipework network system, 274
Pitot tube, 143, 147
plant changes, 344
plant influent, 136
plant influent
piping network system, 274
plastic sheet and floating covers, 733
plastic media trickling filter, 469, 472–475
plastic lagoon liners, 696
plastic pipes and systems, 247
plastic (polyethylene), 823
plug-flow treatment, 542
Pneumatic systems, 152
Pneumatic tools, 82, 84
positive displacement blowers, 273, 288
portable multi-gas monitor, 79
Positron emission tomography (PET), 292
postnitrification MBBR, 562, 563
potable water, 34
Powers
activated carbon, 123–124
organic coagulant aids, 122
power, 977
Power tools, 82–84
preaeration, 137, 186
operation and maintenance, 182
shutdown procedures, 183
startup procedures, 182
Precipitate, 792
precipitation, 792
preliminary treatment, 16
definition of, 136
efficiency of, 136
emergency storage basins, 137, 183–184, 186
calibration and cross-checking meter
controllers, 150
determining flow rate, 140
devices, 142–146
example, 141–142
location of measuring devices, 146–147
maintenance, 150–152
troubleshooting meters, 153
grit chambers/channels, 18–19
grit removal, 136–137, 186–187
aerated grit chambers, 172–174
cyclone grit separators, 174–177
disposal of grit, 180
grit channels, 165–172
grit channel safety, 181–182
grit, received quantities, 179–180
grit washing, 177–179
operation and maintenance, 180–181
vortex-type grit chambers, 174
preaeration, 137, 186
operation and maintenance, 182
shutdown procedures, 183
startup procedures, 182
safety hazards, 137–139
screening and shredding, 18, 136, 185
bar screens and racks, 154–157
disposal of screenings, 157–161
mechanical cleaning equipment, 157, 158
operating grinders and comminutors, 161–164
safety around grinders, 164–165
Pressure sewers, 15
Pressurized pipes and systems, 247
Presumptive test, 903
Preventive maintenance, 300
Primary clarifier, 22, 24, 192, 208, 214–221
Primary treatment, 16
abnormal operations and troubleshooting, 212–221
calibrator efficiency, 221–224
calibrators, 22–24
definition, 192
plan diagram, 192, 194
sedimentation and flotation (see Sedimentation and flotation)
treatment processes flow diagram, 192, 193
flow equalization
disadvantage of, 227
evaluation of, 231
in-line equalization, 227
operating equalization tanks, 230
pumps and flow controls, 229–230
side-line equalization, 227
tanks, 228–229
normal operations
cleaning weirs and troughs, 211
equipment/process failures, 210
sludge and scum pumping, 211–212
operation and maintenance, 225–226
safety
avoiding atmospheric hazards, 205–206
avoiding falls, 206
avoiding strains and overexertion, 206
considerations, 225
electric shock prevention, 207
preventing drowning, 206
shutdown procedures, 221
startup procedures
circular clarifiers, 207–208
rectangular clarifiers, 209
painting, 76
Palmer-Bowlus flume, 142, 145
Parshall flume, 21, 142, 144
Path control, 67
Pathogenic, 764
Pathogens, 2, 238, 576
Percentages, 953–956
Percolation, 703
Permeate, 34
Personal protective equipment (PPE), 56, 62, 85
eye protection, 65–66
foot protection, 65–66
hand protection, 66–67
head protection, 66–67
laboratory safety, 762, 763
Petri (culture) dish, 781
pH, 7, 701, 760, 862–865
Phenylarsine oxide (PAO), 860
Phosphorus, 896
Photosynthesis, 35, 701
pinpoint floc, 361–362
pipet bulbs, 784, 785
pipet filler, 784, 785
pipets, 779
Piping network system, 274
Pitot tube, 143, 147
Plant changes, 344
Plant influent
piping network system, 274
plastic sheet and floating covers, 733
plastic media trickling filter, 469, 472–475
plastic lagoon liners, 696
Plug flow activated sludge process, 307
Plug flow treatment, 542
Pneumatic systems, 152
Pneumatic tools, 82, 84
Polishing lagoons, 698
Polyelectrolyte, 358
Polyphosphates, 896
ponding, 524–525
Potable water, 34
Pump, 977
Power tools, 82–84
Preaeration, 137, 186
operation and maintenance, 182
shutdown procedures, 183
startup procedures, 182
Primary clarifier, 22, 24, 192, 208, 214–221
Primary treatment, 16
abnormal operations and troubleshooting, 212–221
calibrator efficiency, 221–224
calibrators, 22–24
definition, 192
plan diagram, 192, 194
sedimentation and flotation (see Sedimentation and flotation)
treatment processes flow diagram, 192, 193
flow equalization
disadvantage of, 227
evaluation of, 231
in-line equalization, 227
operating equalization tanks, 230
pumps and flow controls, 229–230
side-line equalization, 227
tanks, 228–229
normal operations
cleaning weirs and troughs, 211
equipment/process failures, 210
sludge and scum pumping, 211–212
operation and maintenance, 225–226
safety
avoiding atmospheric hazards, 205–206
avoiding falls, 206
avoiding strains and overexertion, 206
considerations, 225
electric shock prevention, 207
preventing drowning, 206
shutdown procedures, 221
startup procedures
circular clarifiers, 207–208
rectangular clarifiers, 209
Primary vortex, 174
Probe-based electronic instruments, 805–807
Process control, 344–345, 761
Process control tests, 222
Process startup procedures, 422–436
Programmable logic controllers (PLCs), 42, 412
Publicly owned treatment works (POTWs), 11
Pump motor, 410
Pumps, 376–378
capacity, 992–993
characteristics, 990–992
efficiency, 993–996
friction/energy losses, 997–1000
head, 988–990
horsepower, 984–988
power, 984
pressure, 982–983
pump speed–performance relationships, 996–997
work, 983
Putrescible, 170

R
Radioactive wastes, 5
Random media, 472
Range, 1006
RAS/WAS pumping systems, 434, 446–447
Raw wastewater (sewage) lagoons, 696–697
RBCs. See Rotating biological contactors (RBCs)
Reaction kinetics, 262
Reading volumes, 782, 783
Reagents, 767
Receiver control, 67
Receivers, 148–149
Receiving water, 2
Recirculation, 718
Recirculation ratio, 495–497
Recording meters, 148
Recordkeeping, 810–811
Recordkeeping program, 298–300
Rectangular clarifiers, 22, 194–196, 209
Rectangular weir, 142, 145
Recycle streams, 227
Reducing agents, 585
Refrigerated water sampler, 821, 822
Regression analysis, 1024–1050
Reliquefaction, 598
Remote-manual mode operation, 414
Removal efficiencies, 497–498
Reporting incidents, 60–62
Representative samples, 815–817, 1001
Respiratory protection, 63–64
Return activated sludge (RAS), 242
Return and waste activated sludge pumps, 422
Reverse osmosis (RO), 34
Reverse thrusting jets, 476
Riprap, 722
Rising sludge, 309
Rock media trickling filter, 469, 471–472
Rotameter, 142, 144, 596
Rotary-type distributors, 476
Rotating biological contactors (RBCs), 26, 239, 529–530
components
auxiliary instrumentation, 536–537
baffles, 535–536
covers, 536–537
drive mechanism, 534–535
influent/effluent piping, 536
media, 530–533
tank, 535
equipment inspection and preventive maintenance, 546–547
modes of operation, 541–542
process monitoring and control, 537–538
biofilm thickness, 540–541
disc submergence, 540
hydraulic loading rate, 539
organic loading rate, 538–539
oxygen supply/transfer, 539–540
recirculation rate, 541
rotational speed, 540
water and ambient temperature, 541
reviewing plans and specifications, 542–544
shutdown procedures, 545
startup procedures, 544–545
Rotating equipment hazards, 246
Roughing filters, 510

S
Sacrificial anode, 598
Safety
ASP, 246–247
avoiding atmospheric hazards, 205–206
avoiding falls, 206
avoiding strains and overexertion, 206
chemical handling (see Chemical handling)
collection system
cleaning tools and equipment, 129
evacuation, 126–129
manholes, 125–126
pumping stations, 129–130
traffic hazards, 124–125
considerations, 225
electrical equipment
avoiding electric shock, 90–92
control panels, 95
current and voltage, 89–90
electric motors, 93–94
electric starters, 93
emergency procedures, 92
instrumentation, 94–95
lockout/tagout procedure, 95–97
safe practices, 89
transformers, 92–93
electric shock prevention, 207
facility maintenance
cleaning, 75–76
confined spaces, 78–82
crane operation, 77
explosive gas mixtures, 77–78
painting, 76
power tools, 82–84
safety valves, 85
welding, 84–85
fire prevention and protection
fire exits, 100–101
fire extinguisher, 98–100
fire hoses, 100
plan, 97–98
storage of flammables, 100
grit channel, 181–182
laboratory (see Laboratory safety)
management’s responsibilities for, 56
preventing drowning, 206
prevention
emergency preparedness and response, 72–73
electric shock prevention, 94–95
engineering controls, 62
operator (see Operator safety)
personal protective equipment (PPE), 62
work practice controls, 62
safety program
hazards, 58–60
reporting incidents, 60–62
training, 70–72
vehicle maintenance, 87–89
vehicle operation, 86–87
water, 73–75
Safety data sheets (SDSs), 102–104, 643, 762
Safety hazards, 137–139
Safety program
hazards, 58–60
reporting incidents, 60–62
training, 70–72
Safety valves, 85
Salt
aluminum sulfate, 121
ferric chloride, 121
ferric sulfate, 121–122
ferrous sulfate, 122
sodium aluminate, 122
Sampling
automated sampling device, 821–824
collecting samples
composite samples, 817–820
grab samples, 817
elements of, 814
goals and procedures, 814–815
handling samples
chain-of-custody procedures, 825–827
Submerged fixed film (continued)
start-up and shutdown procedures, 567
troubleshooting, 567–568
Substrate, 261
Subtraction, 945–946
Sulfate, 898–899
Sulfonation systems, 649–650
maintenance, 659–661
operation, 653–659
residual sulfur dioxide, 652–653
sulfonator controls, 650–652
Sulfur dioxide, 643–644
appli-cation point, 648–649
hazards, 645–647
reactions with wastewater, 647–648
safety, 644–645
supply system, 649
Sulfur dioxide (SO₂), 118
Sulfuric acid (H₂SO₄), 110
Supernatant, 39, 40, 240
Supervisory control and data acquisition (SCADA) system, 42, 238, 291, 412
Surface aerators, 36, 369–370, 432, 437–438, 743–745
Surface area, media, 470
Surface mixers, 432
Surface loading rate, 200. (see also
Hydraulic loading rate)
Surface water inflow, 14
Surfactants, 899–900
Surge relief valves, 85
Sus-pended growth systems, 238
Suspended solids (SS), 5, 9, 24, 238, 827, 828, 835–838
Suspended vegetation, 722–723
Synthetic liner, 729–730

T
Tailgate safety meetings, 71–72
Tangential flow membrane filtration, 33
Tank mixers, 437
Tapered aeration activated sludge process, 309
Temperature switch high (TSH), 412
Tertiary treatment, 698
enhanced total suspended solids
removal, 32–33
membrane filtration, 33–35
nitrification, 31
nitrogen removal, 31
phosphorus removal, 32
Test tubes, 778
Time-weighted average (TWA), 69
Titrate, 606, 799
TKN. See Total Kjeldahl Nitrogen (TKN)
“To contain” (TC) pipet, 784
“To deliver” (TD) pipet, 784
Tongs, 781
Ton tanks, 623–624
Total coliform
membrane filtration technique, 906–909
multiple tube fermentation for, 903–906, 911–917
Total dissolved solids (TDS), 35
Total dynamic head (TDH), 990
Totalizing meters, 149
Total Kjeldahl Nitrogen (TKN), 868, 874–877
Total organic carbon (TOC), 9, 296
Total phosphorus, 898
Total solids, 8, 798, 831–833
Total suspended solids, 32, 222, 238, 289, 503–504, 798, 805
Total suspended solids analyzers, 288
Toxic, 5, 101, 212
Toxic fumes, 767–768
Toxic paints, 76
Transformers, 92–93
Transmitters, 147
Treatment plant operational variables
biological solids/active biomass, 260–261
dissolved oxygen, 265
F/M ratio, 261–262
HLR and HRT, 259–260
influent characteristics, 257–259
MCRT and SRT, 263–269
oxidation uptake rate (OUR), 262–263
reaction kinetics, 262
sludge age, 263–269
sludge volume index (SVI), 269–270
solids in aeration tank, 260
substrate, 261
volume of reactors, 259
volumetric organic loading, 260
Trickling filters, 26, 27, 239, 466–468
classification
applied organic loading rates, 506
effluent soluble BOD, 507
high-rate filters, 510
intermediate-rate filters, 509–510
low-rate trickling filters, 508–509
nitrifying trickling filters, 510–511
roughing filters, 510
construction, startup, and shutdown, 515–518
containment structure, 479–481
distribution system, 474
filter pump station, 483
fixed nozzle, 476
hydraulically propelled rotary distributor, 477
motorized column assembly, 477–478
motorized rotary distributor, 477–479
rotary-type, 476
speed-retarder orifices, 476
media characteristics, 470–471
mode-of-operation, 511–513
operation and maintenance, 518–521
plastic media, 469, 472–475
process monitoring and control, 486–487
daily plant monitoring, 502–506
dosing rate, 492–495
hydraulic loading rate, 490–492
organic loading rate, 487–489
oxygen supply, 498–501
recirculation ratio, 495–497
removal efficiencies, 497–498
sampling and laboratory analysis, 501–502
reviewing plans and specifications, 513–514
rock media, 469, 471–472
safety, 485–486
secondary clarifier, 483–485
solids processing equipment, 485
troubleshooting
guide, 521–523
icing, 526
immobilized rotating distributor, 526–527
odor, 521, 523
pending, 524–525
trickling filter macro fauna, 525–526
upstream and downstream treatment processes, 527–528
derain system, 481–482
Trihalomethanes (THMs), 662
Troubleshooting, 212–221, 761
averaged sludge process, 366–368
diffusers, 374–376
air distribution, 373–374
air filter, 373
air headers, 374–375
blower operation, 369, 371–373
gates and valves, 378–378
principles of, 365
pumps, 376–378
sludge collector, 379–380
surface aerators, 369–370
meters, 153
trickling filters
guide, 521–523
icing, 526
immobilized rotating distributor, 526–527
odor, 521, 523
pending, 524–525
trickling filter macro fauna, 525–526
upstream and downstream treatment processes, 527–528
TSS. See Total suspended solids (TSS)
Turbidity, 288, 805, 806, 846–847
Turbidity meters, 285, 288, 290
Turbo blowers, 433

U
Ultraviolet radiation, 579
Ultrasonic flowmeter, 287
Ultraviolet radiation, 579
attenuation, 663–664
equipment configuration
bank of UV lamps, 665, 667
cleaning equipment, 669–670
closed-vessel UV chamber, 667
critical sensors, 670–671
horizontal, 665–666
lamps and sleeves, 668–669
vertical, 665–666
lamp and sleeve, 663–664
maintenance
ballast, 682–683
lamp, 682
quartz sleeve cleaning and replacement, 681–682
reactor cleaning, 679–681
sensor, 683–684
normal and abnormal operation
 cleanup quartz sleeves, 676
correcting performance issues, 677–678
equipment startup/shutdown procedures, 672–673
monitoring and managing UV dose, 673–675
monitoring influent and effluent characteristics, 675–676
monitoring lamp output intensity, 676–677
monitoring water flows and levels, 673
recordkeeping, 678–679
radiation spectrum and UV lamp output, 670
reviewing plans and specifications, 684–685
safety, 665
validation test, 665
Underdrain system, 481–482
Underflow discharge, 177
Uniform Fire Code (UFC), 578
Units
distance or length, 956–957
surface area of circle, 959–960
surface area of cone, 961–962
surface area of cylinder, 960–961
surface area of rectangle, 957–958
surface area of sphere, 962
surface area of trapezoid, 959
surface area of triangle, 958–959
Untreated waste discharges
disease transmission, 6–7
oxygen depletion, 5–6
solids accumulation, 5
water clarity and color, 7
Upper explosive limit (UEL), 77, 78
Upstream and downstream treatment processes, 527–528
Urban water cycle, 3–4
US Environmental Protection Agency (EPA), 10
US Nuclear Regulatory Commission (NRC) regulations, 74, 75
UV disinfection, 29
UV lamp, 29, 30
UV lamp assemblies, 29, 30
Vacuum collection systems, 15
Vacuum gas feed chlorinator, 594
Vehicle maintenance, 87–89
Vehicle operation, 86–87
Velocity and flow rate, 968–970
Venturi meter, 21, 22
Vertical axis surface aerators, 276
Vertical-flow media, 472–474
Vertical-flow media, 472–474
Very dark or black foam, 354–355
Viscosity, 198
Void ratio, media, 470
Volatiles liquids, 773
Volatiles solids, 798, 841–845
Volume
cone, 965
cube, 963
cylinder, 964
rectangular prism, 963–964
sphere, 965
triangular prism, 964
Volumetric flasks, 780
Volumetric pipets, 780, 783
Vortex-type grit chambers, 19, 20, 174
Waste activated sludge (WAS), 240
Wastewater collection systems
odor control in, 40
pretreatment program, 13
types of
 combined, 14
gravity, 14
low-pressure, 15
sanitary, 14
stormwater, 14
vacuum, 15
Wastewater components
types of solids
dissolved, 8
floatable, 9–10
organic and inorganic solids, 9
organic content, 9
suspended, 9
total, 8
untreated waste discharges, 5–7
Wastewater treatment
collection system
commercial sources, 254
domestic sources, 254
industrial material spills, 255
industrial sources, 255
infiltration and inflow, 256
maintenance activities, 256–257
disinfection, 28–30
electrical power and instrumentation control, 42
fixed film systems, 239
flow diagram, 16, 17
flow measuring devices, 20–22
lagoon systems, 35–36
maintenance program, 42–43
odor control, 40–41
operational variables
 activated sludge process variables, 258–271
 influent characteristics, 257–258
preliminary treatment (see Preliminary treatment)
primary treatment, 22–41
safety program
 accident prevention, 44–45
types of safety hazards, 45
sampling and laboratory analysis, 41–42
secondary treatment, 16
 activated sludge systems, 24–26
fixed film processes, 26–27
secondary clarifiers, 27–28
tertiary treatment
 enhanced total suspended solids removal, 32–33
membrane filtration, 33–35
nitrification, 31
nitrogen removal, 31
phosphorus removal, 32
Wastewater treatment plant operator, 4, 46–50
Water bodies, 238
Water conveyance systems, 12–15
Water extinguishers, 99
Water quality, 342–343
Water Quality Based Permitting, 11
Water resource recovery facilities (WRRF), 2
Water safety
cold-weather conditions, 74
filters, 73
handrails, 73
infections and diseases, 74
radiological hazards, 74–75
swim, 74
Water sprayers, 417
Weed and insect control
dike vegetation, 723
emergent weeds, 721–722
herbicides, 723–724
insects, 724–725
suspended vegetation, 722–723
Weir, 21
Weir diameter, 201
Weir loading rate, 200
Welding, 84–85
Wetting rate. See Hydraulic loading rate
Winkler method, 885
Winter conditions, 732
Work, 975
Work environment/conditions, 58
Wuhrman process, 562, 564