Effectiveness of Native Vegetation Planting Techniques to Minimize Erosion

Presented at:

Authors:
Brent G. Hallock, Earth and Soil Sciences Dept., Cal Poly, San Luis Obispo
Kaila Dettman, Earth and Soil Sciences Dept., Cal Poly, San Luis Obispo
Steve Rein, Earth and Soil Sciences Dept., Cal Poly, San Luis Obispo
Mike Curto, Earth and Soil Sciences Dept., Cal Poly, San Luis Obispo
Misty Scharff, Caltrans/CSUS Office of Water Programs

Disclaimer:
This work reflects the author’s opinions and does not represent official policy or endorsement by the California Department of Transportation, the California State University, or the University of California.
ABSTRACT

Vegetation plays a key role in decreasing soil detachment and transport from project sites. Vegetation promotes long-term protection of the soil surface via leaf cover and root establishment, provides a viable alternative to many synthetic means of erosion control, increases biodiversity, and supplies aesthetic value to sites. However, native vegetation can be a challenge to establish in disturbed soils. Successful establishment relies on proper moisture availability, appropriate nutrient levels, adequate soil structure, and suitable planting techniques.

The California Department of Transportation, Office of Landscape (Caltrans), and the Office of Water Programs, California State University, Sacramento (OWP), conducted a study with the staff at the Erosion Research Facility at California Polytechnic State University, San Luis Obispo (Cal Poly) testing the performance of various planting techniques. This study
compared flats or sod strips, plugs, hydroseed, and compost applications by measuring the effect of each on vegetative cover, erosion, and water quality.

The techniques were applied to boxes filled with clay loam soil and set at a 2H:1V slope. Combinations of techniques were: flats or plugs on top and toe, flats or plugs on toe only, and hydroseeding. Species composition of the flats and plugs included *Bromus carinatus* (California Brome) and *Achillea millefolium* (Common Yarrow). The boxes were exposed to natural rainfall recorded by an onsite weather station, as well as simulated rainfall that mimicked a 50-year storm event. Runoff was collected and analyzed for total runoff, sediment load, sediment concentration, pH, and salt concentration. Understory and overstory vegetative cover was measured using a modified transect method.

Planting on the top and toe removed 99% and 85% of the sediment produced by bare ground and hydroseeding alone, respectively. This suggests that successful establishment of vegetation on the top and toe is crucial. Flats consistently performed better than plugs, removing 80% more sediment and producing more native vegetative cover. Jute and compost decreased sediment load, but inhibited plant growth. Compost did not give native vegetation an advantage over weedy annual vegetation. Higher pH and salt concentrations were detected in the runoff from boxes treated with compost, but the levels were not harmful to plants.

Planting techniques greatly affect the success of vegetative establishment in removing sediment from runoff, increasing infiltration, and promoting vegetative cover. Therefore, careful consideration must be given to how vegetation is planted on construction sites and disturbed soils.

Key Words: erosion control; native vegetation establishment; water quality; composting; flats, plugs, and hydroseeding

INTRODUCTION

Vegetation plays a key role in decreasing soil particle detachment and transport from sites where the soil surface has been disturbed by human activities. Vegetation promotes long-term protection of the soil surface by providing leaf cover that intercepts precipitation and by establishing roots, which aid soil structure development, thereby increasing infiltration and soil stability. Vegetation also provides a viable alternative to many synthetic means of erosion control, increases biodiversity, and increases the aesthetic value of project landscapes.

Native vegetation can be difficult to establish in disturbed soils with low organic matter content, compaction, and aggressive weedy annual vegetation. Successful establishment relies on proper moisture availability, appropriate nutrient levels, adequate soil structure, and suitable planting techniques.

As part of a cooperative effort to improve methods of establishing native vegetation for erosion control and improving water quality, the California Department of Transportation (Caltrans), and the California State University, Sacramento, Office of Water Programs (OWP), conducted a study at the Erosion Control Research Facility at California Polytechnic State University, San Luis Obispo (Cal Poly) to test the performance of various planting techniques.

GOAL

This experiment sought to identify and compare planting techniques that provide immediate soil surface stability and long-term erosion control to reduce soil loss and improve water quality using native vegetation.

OBJECTIVES

- Identify planting techniques that promote long term establishment of native vegetation.
- Compare the effects of plugs, flats (sod strips) and hydroseed planting techniques on minimizing erosion and improving water quality.
- Determine the effects of compost soil amendment on native vegetative cover, species composition, and weedy annual species suppression.