TREATMENT OF METAL WASTESTREAMS

Fourth Edition

Words ... xi
1 Need for Treatment and Employee Safety.. 1
2 Methods of Treatment.. 21
3 Operation and Maintenance (O&M).. 75

Appendices
Comprehensive Review Questions and Suggested Answers............................... 117
How to Solve Treatment of Metal Wastestreams Arithmetic Problems............... 125
Index .. 151
INDEX

A
Accurate sampling, 88
Acids, 39, 82, 84
Adsorption, carbon, 65
Advanced treatment processes
coprecipitation, 52, 70–71
electrocoagulation, 70
reverse osmosis, 63, 71
Aeration, 65
Alarm, 86, 87
Alkaline cleaning, 64
Amenable cyanides, 56
Amphoteric metals, 83
Analytical laboratory support, 106–110
Annual tasks, 93
Anodizing, 6
Arithmetic, 125–149
Atomic adsorption, 86, 109
Automatic sampling devices (auto-samplers), 89

B
Bag prefilters, 60
Bares, 89, 84
Basic conversion factors, 131
Basic formulas, 132–134
Basic metal, 6
Batch processes, 30, 31, 36, 39, 58–59
Bearings, 95
Bench tests, 34, 36, 45, 51
Buchner funnel, 36
Buffer capacity, 42
Buffer solutions, 102
Burns, 84

C
Calibrating meters, 102–103, 109–110
Carbon adsorption, 65
Cardiopulmonary resuscitation (CPR), 84
Cartridge prefilters, 60
Caustic soda (sodium hydroxide)
safety, 82–83
uses, 55, 82, 83
Cavitation, 96
Centrifugal pumps, 97, 105
Chain of custody, 109
Charges, sewer, 5
Chelating agents, 50–51
Chemical equilibrium, 39
Chemical feed systems (feeders), 105–106
calculations, 138–140
Chemical milling, 6
Chemical mixer, 106
Chemical processes, 85
Chemicals
characteristics, 7–8, 14
handling and storage, 8–9, 81–85
information on, 10, 12
uses, 81, 82
Chemical solutions, calculations, 137–138
CHEMTREC [800) 424-9300], 18
Chlorine, 58, 84–85, 93
Chromium, 27, 54–56, 59, 60
Circuit boards, 104
Circuit breakers, 96, 103, 104, 105, 106
Cleaning meters and probes, 101–102
Cleansing agents, 5
Clothing, protective, 9, 82
Coagulants, calculations, 140–143
Coagulation, 45
Coatings, 6
Color comparison kits, 107, 108, 109
Common ion effects, 44
Common metals, 44
filtration, 45, 48, 49
hydroxide precipitation, 44–50
Lamella settler, 45, 46, 47
optimum pH, 44
removal, 44–50
sulfide precipitation, 44, 50
treatment, 27
Complexed metals, 27
chelating and complexing agents, 50–51
coprecipitation, 52
dishiocarbamates (DTG), 52
ferrous sulfate, 52
high-pH precipitation, 51
hydroxide precipitation, 51
insoluble thiozyl xanthate (IHX), 53–54
pH ranges, 51
precipitation, 50–54
calculations, 144
problems, 50–51
reduction, 51
removal, 50–54
sodium borohydride, 53
Complexed metals (continued)
sulfide precipitation, 51
treatment, 27
trisodium salt, 52–53
Complexing agents, 6, 50–51
Composite (proportional) samples, 88
Conductivity, 39
Constant differential meter, 90, 91
Containers, sampling, 89
Containment procedures, 81
Contamination
electrode, 103
polymers, 83
raw wastes, 31
sludge, 5
spills, 81
Continuous processes, 30, 32, 39, 58–59
Controller, pH, 100
Control measures, 9
Control panel, 86, 87
Controls, pump, 95–96
Conversion factors, 131
Coprecipitation, 52, 70–71
Corrosive wastes, 5
Cyanide
amenable to chlorination, 56
batch treatment, 30, 31, 58–59
calculations, 147–149
chemistry, 56–57
continuous treatment, 58–59
ferrocyanide complexes, 59
ORP, 57, 58
oxidation, 56–59
refractory, 56
safety, 56, 101
sources, 56
treatment, 27, 56

D
Daily tasks, 86, 93
Database information, 5
Degreasing agents, 5
Diaphragm meters, 91
Diaphragm pumps, 105
Differential producers, 91, 92
Diking, 81
Displacement meters, 91, 92
Displacement pumps, 94, 99
Dispense methods, waste, 9
Dithiocarbamates (DTC), 52
DPD method, 59
Dynamic pumps, 94

E
Electrical conductivity, 39
Electrical controls, pumps, 95–96
Electrical maintenance, 92
Electrocoagulation, 70
Electrodes, 99–101, 103
Electrodialysis, 61
Electroless plating, 5, 6
Electrolyte, 39, 61
Electroplating, 5–6
Electrowinning, 27
Emergencies, 18, 84
Emergency team, 18
Employee Right-To-Know (RTK) laws, 9–18
Emulsified oils, 64
Environment, 5, 65
Equalization tank, 32, 55
Equivalence point, 42
Errors, sampling, 88, 89, 109
Etching and chemical milling, 6
Evaporation, 59, 61
Exhaust systems, 93
Explosion and fire hazard data, 8
Explosive wastes, 5
Eye protection, 9
Ferrocyanide complexes, 59
Ferrous sulfate, 52
Filter press cake, 65, 69
Filter presses, 65–69
Filtration, 45, 48, 49
Fire and explosion hazard data, 8
First aid, 13, 84–85
Flammable wastes, 5
Floating oils, 64
Floculation, 36, 45, 104
Flow conservation and equalization, 135
Flow equalization tank, 32, 55
Flow formula, 90
Flow measurements
calibration, 102–103
operators' responsibilities, 90
operators' responsibilities, 90
Flowmeters, 90–92
Flumes, 91
Formulas, 132–134
Fuses, 96, 103, 104, 105, 106

G
Gas chromatograph, 109
Globally Harmonized System of Classification and Labeling of
Chemicals (GHS), 7
Gloves, protective, 9
Good housekeeping, 32
Grab samples, 88
Ground-loop problem, 103

H
Handling chemicals, 8–9, 81–85
Hazard communication, 9–18
chemical information, 10, 12
first aid, 13
hazardous conditions, 12
hazardous materials, 10, 12, 13
labeling, 9, 10, 11, 12, 15–17
safety data sheets (SDSs), 10, 11, 12, 13–15
training, 11, 17–18
Hazard Communication Standard, 29 CFR 1910.1200, 9, 10
Hazardous chemicals, 81–85
Hazardous conditions, 12
Hazardous ingredients, 7
Hazardous Material Information System (HMIS), 17
Hazardous materials, 10, 12, 13
Hazardous polymerization, 8
Hazardous reactivity, 8
Head area meters, 91
Health hazard data, 8
Hexavalent chromium
batch treatment, 30, 31
calculations, 144–147
reduction, 54–56
sources, 54
treatment, 27
High-pH precipitation, 51
Holding time for samples, 89
Hydroquinone, 54, 103
Hydroxide precipitation, 30, 44–50, 51
calculations, 144
Hygroscopic, 83
Hypochlorite, 83

I
IDLH (Immediately Dangerous to Life or Health), 93
Immersion plating, 6
Impeller, 96
Industrial sources of wastewater, 5–6
Industrial waste ordinances, 5
Insoluble starch xanthate (ISX), 53–54
Instrumentation, 104
Inventory, 93
Ion exchange
chromium recovery, 59, 60
mixed-bed unit, 61
plating wastes, 59–63
precious metals, 59–63
pressure drop, excessive, 63
regeneration, 60–61, 62, 63
throughput capacity loss, 62
troubleshooting, 62–63
water quality problems, 62–63
Isopropanol, 34, 102
Jar tests, 34, 36, 45

K
(NO LISTINGS)

L
Labeling, hazard communication, 9, 10, 11, 12, 15–17
Labeling samples, 89
Laboratory, 89, 90, 106–110
Lacrymator, 57
Lamella settler, 45, 46, 47
Landfills, 65
Leak control, 9, 81, 83, 86, 93
LED (light emitting diode), 103
Lime, 82, 83
Lubrication of pumps, 95

M
Maintenance
electrical, 92
exhaust systems, 93
flowmeters, 90–92
handling of chemicals, 81–85
inventory, 93
meters, 90–92
preventive maintenance program, 92
process wastes, 81
pumps, 94–99
records, 92
safety, 81–85, 92
storage of chemicals, 81–85
typical tasks, 92–95
ventilation systems, 93
Material safety data sheets (MSDSs), 7–9
Mechanical seals, 98
Metal finishing, 5
Metal wastestreams, 5
Meters, 90–92
Methods of treatment
batch processes, 30, 31, 36, 39, 58–59
chromium, 27, 54–56
common metals, 27, 44–50
complexed metals, 27, 50–54
continuous processes, 30, 32, 39, 58–59
conventional chemical treatment methods, 29
Methods of treatment (continued)
cocurrent precipitation, 52, 70–71
cyanoide, 27, 56–59
electrocoagulation, 70
hexavalent chromium, 27, 54–56
neutralization, 39–43
oily wastes, 27, 64
precious metals, 27, 59–63
reverse osmosis, 61, 71
sludge, 65–69
solvent control, 64
toxic organics control, 27, 64–65

Mixer, chemical, 106
Monitor, ORP, 101
Monthly tasks, 87, 93
Mother circuit boards, 104
Motors, 95
MSDSs (material safety data sheets), 7–9

National Fire Protection Association (NFPA) 704 Hazard Rating, 17
National Pollutant Discharge Elimination System (NPDES), 5
Need for treatment, 5
Neutralization, 39–43
acids and bases, 39
batch processes, 39
calculations, 143–144
continuous processes, 39
optimum pH, 44
pH measurement, 106, 107, 108, 109
safety, 43
Noisy pumps, 96

Observations, 86
Oil and grease removal, 86
Oil separation, 86
Oil wastes, 27, 64
Operation
daily, 86
first aid, 84–85
flow measurements, 90–92
handling of chemicals, 81–85
laboratory, 89, 90, 106–110
safety, 81–85

sampling, 88–90
storage of chemicals, 81–85
weekly, 87
Operator’s tasks, 81
Ordinances, sewer-use and industrial waste, 5
Organic solvents, 5
Orifice meters, 91
ORP
Sew Oxidation-reduction potential
OSHA’s Hazard Communication Standard, 29 CFR 1910.1200, 9, 10
Oxidation, cyanide, 56–59
Oxidation-reduction potential (ORP), 53, 54
cyanoide, 57, 58
hexavalent chromium treatment, 55
meters and probes, 101
calibration, 103, 109–110
cleaning, 101–102
hydroquinone, 54, 103
monitor, 101
scales, 109–110
sensors, 101
standard buffer solutions, 102
troubleshooting, 103–104, 106

Oxidation-reduction potential (ORP), 53, 54
cyanide, 57, 58
hexavalent chromium treatment, 55
meters and probes, 101
 calibration, 103, 109–110
 cleaning, 101–102
 monitor, 101
 scales, 109–110
 sensors, 101
 standard buffer solutions, 102
 troubleshooting, 103–104, 106

pH meters and probes, 99
calibration, 102–103, 109–110
cleaning, 101–102
controller, 100
calibrating, 103–104, 105–106
Phone numbers, emergency, 18
Physical/chemical characteristics, 7–8, 14
Piston meters, 91
Pitot tubes, 92
Plate and frame filter presses, 65–69
Piping, 5–6
Plug valve, 98
Pollutants, need for control, 5
Polyelectrolytes, 33
Polymerization, 8
Polymers, 33–39
calculations, 36–39, 140–143
coeagulation, 45
containment, 83
flocculation, 45

Optimum pH, 44
Neutralization, 39–43
Continuous processes, 39
Sewer Service Lines, 8
Sewage treatment plants, 7–8
Sewers, 5
Sigmas, 8
Smoke control, 104
Solvents, 5
Sorption, 30
Sorption, solid phase, 30
Storage of chemicals, 81–85
Cyanide, 27, 56–59
Hexavalent chromium, 27, 54–56
Neutralization, 39–43
Oily wastes, 27, 64
Precious metals, 27, 59–63
Reverse osmosis, 61, 71
Sludge, 65–69
Solvent control, 64
Toxic organics control, 27, 64–65

Storage of chemicals, 81–85
Sewer Service Lines, 8
Sewage treatment plants, 7–8
Sewers, 5
Sigmas, 8
Smoke control, 104
Solvents, 5
Sorption, 30
Sorption, solid phase, 30
Storage of chemicals, 81–85
Cyanide, 27, 56–59
Hexavalent chromium, 27, 54–56
Neutralization, 39–43
Oily wastes, 27, 64
Precious metals, 27, 59–63
Reverse osmosis, 61, 71
Sludge, 65–69
Solvent control, 64
Toxic organics control, 27, 64–65

Tanks, 65–69
Toxic organics control, 27, 64–65

Transfer, mass, 106
Trim, 91
Trunnion bearing, 93
Troubleshooting, 103–104, 106
U
Ultrasound, 104
Urea, 27
Vacuum, 98
Vapor, 98
Ventilation, 104
W
Wastewater treatment plants, 7–8
Well, 98
Weekly tasks, 87
Wellhead, 98
Workplace hazards, 81
Wrench, 93
X
Xanthan, 27
X-rays, 93
Y
Yearly tasks, 93
Yellowcake, 27
Z
Zinc, 27
Zinc plating, 6
Zinc waste, 27
Zip ties, 93
Polymers (continued)
 flow rate, 104
 properties, 34
 safety, 82
 sedimentation, 45
Positive displacement pumps, 99, 105
Potting compounds, 102
POTW (publicly owned treatment works), 5
Precious metal recovery
electrodialysis, 61
electrolyte, 61
evaporation, 59, 61
ion exchange, 59–63
reverse osmosis, 61
treatment, 27
Precipitate removal, probes, 102
Preservation of samples, 89
Pressure drop, excessive, 63
Pretreatment, 5
Pretreatment standards, 28
Preventive maintenance, 92
Printed circuit board manufacturing, 5, 6
Probes, 99–104
Process chemicals, 81, 82
Process upsets, 104
Propeller meters, 91
Proportional samples, 88
Protective clothing, 9, 82
Protective gloves, 9
Publicly owned treatment works (POTW), 5
Pumps
cavitation, 96
driving equipment, 95
electrical controls, 95–96
lubrication, 95
noise, 96
starting, 95, 97–98, 99
stopping, 95, 97, 98, 99
troubleshooting, 96, 105
types, 94
Q
Quality control in laboratory, 90
Quicklime, 82, 83
R
Reactivity data, 8
Records, 86, 92
Recycling of water, 32
Redox, 34
Reducing agents, 55
Reduction processes
complexed metals, 51
hexavalent chromium, 54–56
Refractory cyanides, 56
Regeneration, ion exchange, 60–61, 62, 63
Representative samples, 88–89
Respiratory protection, 9
Reverse osmosis, 61, 71
Right-To-Know (RTK) laws, 9–18
Rinse water treatment, 31, 32, 33, 56, 58
Rotameter, 90, 91
S
Sacrificial anodes, 70
Safe handling and use, 8–9
Safety
 acids, 43, 82, 84
 bases, 43, 84
 caustic (sodium hydroxide), 82–83
 chemicals, 81–85
 chlorine, 58, 84–85
 cleaning probes, 101
 cyanide, 56, 101
 first aid, 84–85
 Hazard Communication Standard (HCS) and Worker
 Right-To-Know (RTK) Laws, 9–18
 maintenance, 81–85, 92
 MSDSs, 7–9
 neutralization, 43
 operation, 81–85
 pH adjustment, 43
 polymers, 82
 troubleshooting, 81–85
Safety data sheets (SDSs), 10, 11, 12, 13–15
Sampling
 accuracy, 88
 analysis, 136
 automatic sampling devices (auto-samplers), 89
 calculations, 136
 chain of custody, 109
 composite (proportional) samples, 88
 containers, 89
 devices, 89
 errors, 88, 89, 109
 grab samples, 88
 holding time, 89
 importance, 88
 labeling, 89
 laboratory, 89, 90
 preservation, 89
 quality control in laboratory, 90
 representative samples, 88–89
 split samples, 109
 time of, 89
 types, 88
Scales, pH and ORP, 109–110
SDSs (safety data sheets), 10, 11, 12, 13–15
Sedimentation, 45
Segregation, wastewater streams, 6, 27, 32, 64
Semiannual tasks, 93
Sensors, ORP, 101
Sewer service charges, 5
Sewer-use ordinances, 5
Sludge
cake, 65, 69
containers, 65
contamination, 5
disposal, 65
plate and frame filter presses, 65–69
polymer dose, 36
source, 31, 65
treatment, 36, 65–69
calculations, 149
Sodium borohydride, 53
Sodium hydroxide (caustic soda)
safety, 82–83
uses, 55, 82, 83
Solenoid valve, 105
Sewer control, 32, 64
Source control, 32
Sources of wastewater, 5–6, 54, 56, 61, 64
Spare parts, 93
Specific gravity, 7, 105
Spectrophotometer, 107
Spill control, 8–9, 81, 86
Storage of chemicals, 8–9, 81–85
Surface preparation, printed circuit board manufacturing, 6
Suspended solids, 31, 45, 56, 58
Tab plating, 6
Threshold limit value (TLV), 7
Throughput capacity loss, 62
Time of sampling, 89
Titration curve, 42–43
Toxicology data, 8, 14
Toxic organics control, 27, 64–65
Toxic wastes, 5
Training, hazard communication, 11
Treatment
batch processes, 30, 31, 36, 39, 58–59
chromium, 27, 54–56
common metals, 27, 44–50
complexed metals, 27, 50–54
continuous processes, 30, 32, 39, 58–59
conventional chemical treatment methods, 29
coprecipitation, 52, 70–71
cyanide, 27, 56–59
electrocoagulation, 70
hexavalent chromium, 27, 54–56
methods, 27
need, 5
neutralization, 39–43
oily wastes, 27, 64
precious metals, 27, 59–63
reverse osmosis, 61, 71
sludge, 65–69
solvent control, 64
toxic organics control, 27, 64–65
Treatment process chemicals, 81, 82
Trisodium salt, 52–53
Trivalent chromium treatment, 55
Troubleshooting
calibrating probes, 103–104
cleaning meters and probes, 101–102
instrumentation, 104
ion exchange, 62–63
ORP meter, 103–104, 106
pH meter, 103–104, 105–106
pumps, 96, 105
safety, 81–85
waste not flocculating, 104
Types of samples, 88
U
UN Globally Harmonized System of Classification and Labeling of Chemicals (GHS), 7
Upset processes, 104
V
Valves, 97, 98, 105
Velocity meters, 91, 92
Ventilation, 9, 55, 82, 93
Venturi tubes, 91
Vaporization, 65
W
Waste disposal methods, 9
Waste not flocculating, 104
Wastewater segregation, 6
Wastewater sources, 5–6, 54, 56, 61, 64
Water hammer, 95, 98
Water quality problems, 62–63
Water quality standards, 5, 28
Weekly tasks, 87, 93
Weirs, 91
Worker Right-To-Know (RTK) laws, 9–18
(X
(NO LISTINGS)
Y
(NO LISTINGS)
Z
(NO LISTINGS)